RAS Chemistry & Material ScienceФизика и химия стекла Glass Physics and Chemistry

  • ISSN (Print) 0132-6651
  • ISSN (Online) 3034-6134

DECOMPOSITION OF GIBBSITE FROM ALUMINATE SOLUTIONS IN LOW-INTENSITY ULTRASONIC FIELDS

PII
10.31857/S0132665122600492-1
DOI
10.31857/S0132665122600492
Publication type
Status
Published
Authors
Volume/ Edition
Volume 49 / Issue number 1
Pages
97-106
Abstract
The results of laboratory studies of the practical application of the reagentless method of strain-pulse regulation in the industrial method of obtaining gibbsite from aluminate solutions using the Bayer method are presented. During decomposition in regulatory regimes, the size and uniformity of crystals increases, and there is an increase in the rates of dissolution of the seed and crystallization of gibbsite. Quantitative characteristics of the degree of transformations are given and the parameters of gibbsite crystals obtained by the traditional method and in different modes of regulation are determined. The results of X-ray phase analysis and granulometric analysis of images obtained using a scanning electron microscope are described.
Keywords
кристаллизация гиббсит кинетика тензоимпульсная регуляция гранулометрия дисперсионный анализ
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
4

References

  1. 1. Danilevich V.V., Isupova L.A., Danilova I.G. Characteristics optimization of activated alumina desiccants based on product of a centrifugal thermal activation of gibbsite // Russian J. Applied Chemistry. 2016. V. 89. № 3. P. 343–353.
  2. 2. Sweegers C., Coninck H.C., Meekes H. Morphology, evolution and other characteristics of gibbsite crystals grown from pure and impure a queous sodium aluminate solution / and etc. // J. Crystal Growth. 2001. V. 233. № 3. P. 567–582.
  3. 3. Панасюк Г.П., Козерожец И.В., Ворошилов И.Л., Белан В.Н., Семенов Е.А., Лучков И.В Термодинамические свойства и роль воды в дисперсных оксидах в процессе превращения прекурсор-бемит на примере гидроксида и оксида алюминия в гидротермальных условиях в различных средах // Журн. физической химии. 2015. Т. 89. № 4. С. 605–610.
  4. 4. Panasyuk G.P., Kozerozhets I.V., Semenov E.A., Ararova A.A., Belan V.N., Danchevskaya M.N. A new method for producing nanosized γ-Al2O3 powder // Russian J. Inorganic Chemistry. 2018. V. 63. № 10. P. 534–539.
  5. 5. Козерожец И.В., Панасюк Г.П., Семенов Е.А., Васильев М.Г., Ивакин Ю.Д., Данчевская М.Н. Влияние кислой среды на гидротермальный синтез бемита // Журн. неорг. хим. 2020. Т. 65. № 10. С. 1325–1330.
  6. 6. Дыкман М.И., Макклинток П.В.Е., Маннелла Р., Стоке Н. Стохастический резонанс при линейном и нелинейном отклике бистабильной системы на периодическое поле // Письма в ЖЭТФ. 1990. Т. 52. № 3. С. 780–782.
  7. 7. Зарембо В.И., Зарембо Д.В. Проявления стохастического резонанса в литейно-металлургических технологиях // Литейщик России. 2018. № 10. С. 22–25.
  8. 8. Зарембо В.И., Колесников А.А. Фоновое резонансно-акустическое управление гетерофазными процессами // ТОХТ. 2006. Т. 40. № 5. С. 520–532.
  9. 9. Прокофьев В.Ю., Гордина Н.Е. Использование ультразвуковой обработки для получения сорбента на основе соединений цинка и гиббсита // Журн. прикладной химии. 2015. Т. 88. № 6. С. 912–918.
  10. 10. Ивахнюк Г.К., Федоров Н.Ф. Активный оксид алюминия // СПб.: Изд-во ООО “Менделеев”, 2014. 76 с.
  11. 11. Коверда В.П., Скоков В.Н. Взаимодействующие фазовые переходы под действием периодического возмущения // Доклады академии наук. 2014. Т. 457. № 1. С. 32–36.
  12. 12. Скоков В.Н., Виноградов А.В., Решетников А.В., Коверда В.П. Стохастический резонанс в кризисном режиме кипения при периодическом тепловыделении // Теплофизика высоких температур. 2016. Т. 54. № 3. С. 366–370.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library