RAS Chemistry & Material ScienceФизика и химия стекла Glass Physics and Chemistry

  • ISSN (Print) 0132-6651
  • ISSN (Online) 3034-6134

Self-Organization of Intermetallic Systems: New Cluster-Precursors K12 = 0@12(Li9Ge3) and K9 = 0@9(Li8Ge) Li68Ge16-oC84 in the Crystal Structure, K11 = 0@11(Li6Ge5) and K6 = 0@6(Li5Ge) Cluster-Precursors in the Li44Ge24-oC68 Crystal Structure and K6 = 0@6(Li3Ge3) Cluster-Precursors in the Li12Ge12-tI24 Crystal Structure

PII
10.31857/S0132665122600662-1
DOI
10.31857/S0132665122600662
Publication type
Status
Published
Authors
Volume/ Edition
Volume 49 / Issue number 1
Pages
15-26
Abstract
A geometric and topological analysis of the crystal structures of Li68Ge16-oC84 (a = 4.551 Å, b = 22.086 Å, c = 13.275 Å, V = 13.275 Å3, Cmcm), Li44Ge24-oC68 (a = 4.380 Å, b = 24.550 Å, c = 10.540 Å, V = 1144.11 Å3, Cmcm), and Li12Ge12-tI24 (a = b = 4.053 Å, c = 23.282 Å3, I41/amd) intermetallic compounds is carried out. For the Li68Ge16-oC84 intermetallic compound, two new frame-forming clusters are found: K12 = 0@12(Li9Ge3) with symmetry m in the form of linked 5-rings Li3Ge2 and Li4Ge, with the Li atoms located in the center of the 5th rings, and K9 = 0@9(Li3Ge)(Li3)2 with symmetry m in the form of linked 3рrings (Li3)(GeLi2)(Li3). For the Li44Ge24-oC68 intermetallic compound, two new frame-forming clusters are established: K11 = 0@11(LiLi5)(Ge5) with symmetry m in the form of 5-ring Ge5 (lying at the base of the pyramid), which are coupled with the 5-atoms of Li, lying in the same plane with the Li atom (top of the pyramid) and K6 = 0@6(GeLi5) with symmetry m in the form of double tetrahedra Li3Ge having a common edge LiGe. For the Li12Ge12-tI24 intermetallic compound, the frame-forming cluster K6 = 0@6(Ge3Li3) with symmetry 2 is found in the form of double tetrahedra Li2Ge2 having a common edge LiGe. The symmetry and topological code of the processes of self-assembly of Li68Ge16-oC84, Li44Ge24-oC68, and Li12Ge12-tI24 crystal structures of cluster-precursors are reconstructed in the following form: primary chain → layer → framework.
Keywords
Li<sub>68</sub>Ge<sub>16</sub>-<i>oC</i>84 Li<sub>44</sub>Ge<sub>24</sub>-<i>oC</i>68 Li<sub>12</sub>Ge<sub>12</sub>-<i>tI</i>24 самосборка кристаллических структур кластерные прекурсоры <i>K</i>12 = 0@12(Li<sub>9</sub>Ge<sub>3</sub>) <i>K</i>9 = 0@9(Li<sub>8</sub>Ge) <i>K</i>11 = = 0@11(Li<sub>6</sub>Ge<sub>5</sub>) и <i>K</i>6 = 0@6(Li<sub>5</sub>Ge) <i>K</i>6 = 0@6(Li<sub>3</sub>Ge<sub>3</sub>)
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
3

References

  1. 1. Inorganic crystal structure database (ICSD). Fachinformationszentrum Karlsruhe (FIZ). Germany and US National Institute of Standard and Technology (NIST), USA.
  2. 2. Villars P., Cenzual K. Pearson’s Crystal Data-Crystal Structure Database for Inorganic Compounds (PCDIC) ASM International: Materials Park, OH.
  3. 3. Zeilinger Michael, Faessler Thomas F. Structural and thermodynamic similarities of phases in the Li – Tt (Tt = Si, Ge) systems: redetermination of the lithium-rich side of the Li–Ge phase diagram and crystal structures of Li17Si4.0 – xGex for x = 2.3, 3.1, 3.5, and 4 as well as Li4.1Ge // Dalton Trans. 2014. V. 43. P. 14959–970.
  4. 4. Johnson Q., Smith G.S., Wood D. The crystal structure of Li15 Ge4 // Acta Crystallographica. 1965. V. 18. P. 131–132.
  5. 5. Hopf V., Mueller W., Schaefer H. Die Struktur der Phase Li7Ge2 // Zeitschrift fuer Naturforschung, Teil B. 1972. V. 27. P. 1157–1160.
  6. 6. Hopf V., Schaefer H., Weiss A. Die Kristallstruktur der Phase Li9Ge4 // Zeitschrift fuer Naturforschung, Teil B. 1970. V. 25. P. 653–653.
  7. 7. Frank U., Mueller W. Li11Ge6, eine Phase mit isolierten, ebenen Ge-Fuenfringen // Zeitschrift fuer Naturforschung, Teil B. 1975. V. 30. P. 313–315.
  8. 8. Scherf Lavinia M., Riphaus Nathalie, Faessler Thomas F. Site-specific substitution preferences in the solid solutions Li12Si7 – xGex, Li12 – yNaySi7, Na7LiSi8 – zGez, and Li3NaSi6 – vGev // Zeitschrift fuer Anorganische und Allgemeine Chemie. 2016. V. 642. P. 1143–1151.
  9. 9. Evers J., Oehlinger G., Sextl G., Becker H.O. Hochdruck LiGe mit Schichten aus zwei- und vierbindigen Germanium atomen // Angewandte Chemie (German Edition). 1987. V. 99. P. 69–71.
  10. 10. Menges E., Hopf V., Schaefer H., Weiss A. Die Kristallstruktur von LiGe – ein neuartiger, dreidimensionaler Verband von Element (IV)-atomen // Zeitschrift fuer Naturforschung. Teil B. 1969. V. 24. P. 1351–1352.
  11. 11. Kiefer F., Faessler T.F. Synthesis and revised structure of the Zintl phase Li7Ge12 // Solid State Sciences. 2011. V. 13. P. 636–640.
  12. 12. Morito Haruhiko, Momma Kenji, Yamane Hisanori. Crystal structure analysis of Na4 Si4 – xGex by single crystal X-ray diffraction // J. Alloys Compd. 2015. V. 623. P. 473–479.
  13. 13. Carrillo Cabrera W., Cardoso Gil R., Somer M., Persil O., vonSchnering H.G. Na12Ge17: a compound with the Zintl anions (Ge4)(4-) and (Ge9)(4-) -synthesis, crystal structure and Raman spectrum // Zeitschrift fuer Anorganische und Allgemeine Chemie. 2003. V. 629. P. 601–608.
  14. 14. Beekman M.,S tefanoski S., Wong-Ng W., Kaduk J.A., Huang Q., Reeg C., Bowers C.R., Nolas G.S. Structure and thermal conductivity of Na(1 – x)Ge(3 + z) // J. Solid State Chemistry. 2010. V. 183. P. 1272–1277.
  15. 15. Boehme Bodo, Reibold Marianne, Auffermann Gudrun, Lichte Hannes, Baitinger Michael, Grin Yuri. Preparation of anionic clathrate-II K24 – xGe136 by filling of Ge(cF136) // Zeitschrift fuer Kristallographie – Crystalline Materials. 2014. V. 229. P. 677–686.
  16. 16. Шевченко В.Я., Блатов В.А., Илюшин Г.Д. Кластерная самоорганизация интерметаллических систем: новый кластер-прекурсор K65 = 0@3@20@42 для самосборки кристаллической структуры Sc96Mg8Zn600-cP704 // Физика и химия стекла. 2022. Т. 42. № 2. С. 94–99.
  17. 17. Ilyushin G.D. Theory of cluster self-organization of crystal-forming systems. Geometrical-topological modeling of nanocluster precursors with a hierarchical structure // Struct. Chem. 2012. V. 20. № 6. P. 975–1043.
  18. 18. Shevchenko V.Ya., Medrish I.V., Ilyushin G.D., Blatov V.A. From clusters to crystals: scale chemistry of intermetallics // Struct. Chem., 2019. V. 30. № 6. P. 2015–2027.
  19. 19. Ilyushin G.D. Intermetallic Compounds KnMm (M = Ag, Au, As, Sb, Bi, Ge, Sn, Pb): Geometrical and Topological Analysis, Cluster Precursors, and Self-Assembly of Crystal Structures // Crystallography Reports. 2020. V. 65. № 7. P. 1095–1105.
  20. 20. Ilyushin G.D. Intermetallic Compounds NakMn (M = K, Cs, Ba, Ag, Pt, Au, Zn, Bi, Sb): Geometrical and Topological Analysis, Cluster Precursors, and Self-Assembly of Crystal Structures // Crystallography Reports. 2020. V. 65. № 4. P. 539–545.
  21. 21. Blatov V.A., Shevchenko A.P., Proserpio D.M. Applied Topological Analysis of Crystal Structures with the Program Package ToposPro // Cryst. Growth Des. 2014. V. 14. № 7. P. 3576–3585.
  22. 22. Blase W., Cordier G. Crystal structure of beta-lithium stannide, beta-LiSn // Zeitschrift fuer Kristallographie. 1990. V. 193. P. 317–318.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library