ОХНМФизика и химия стекла Glass Physics and Chemistry

  • ISSN (Print) 0132-6651
  • ISSN (Online) 3034-6134

Кластерная самоорганизация кристаллообразущих систем: новые трехслойные (K155 = Al@Al6Pd8@Pd12Al30@Pd8Co18Al72) и двухслойные (K55 = Co@Al12@Co12Al30) кластеры-прекурсоры для самосборки кристаллической структуры Pd112Co204Al684-cP1000

Код статьи
10.31857/S0132665122600704-1
DOI
10.31857/S0132665122600704
Тип публикации
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 49 / Номер выпуска 2
Страницы
117-129
Аннотация
С помощью компьютерных методов (пакета программ ToposPro) осуществлен геометрический и топологический анализ кристаллической структуры Pd112Co204Al684-cP1000 с пр. гр. Pa-3, a = 24.433 Å, V = 14587.24 Å3. Металлокластеры-прекурсоры кристаллических структур определены с использованием алгоритма разложения структурных графов на кластерные структуры и путем построения базисной сетки структуры в виде графа, узлы которого соответствуют положению центров кластеров-прекурсоров \(S_{3}^{0}.\) Установлены 26 906 вариантов кластерного представления 3D атомной сетки с числом структурных единиц от 3 до 12. Рассмотрена самосборка кристаллической структуры из новых трехслойных K155(4a) =Al@Al6Pd8)@Pd12Al30@Pd8Co18Al72 и двухслойных кластеров-прекурсоров K55(4b) = Co@Al12@Co12Al30 с симметрией g = –3. В элементарной ячейке позиции 4a занимают атомы Al, являющиеся центральными атомами 15-атомного полиэдра K15(4a) = Al@Al8Pd6 и позиции 4b занимают атомы Co, являющихся центральными атома 13-атомного икосаэдра K13(4b) = Co@Al12. Реконструирован симметрийный и топологический код процессов самосборки 3D структур из кластеров-прекурсоров K155 и K55 в виде: первичная цепь → микрослой → микрокаркас. В качестве спейсеров, занимающих пустоты в 3D каркасе из нанокластеров K155 и K55, установлены атомы Al.
Ключевые слова
интерметаллид Pd<sub>112</sub>Co<sub>204</sub>Al<sub>684</sub>-<i>cP</i>1000 нанокластеры-прекурсоры <i>K</i>155 = Al@Al<sub>6</sub>Pd<sub>8</sub>)@Pd<sub>12</sub>Al<sub>30</sub>@Pd<sub>8</sub>Co<sub>18</sub>Al<sub>72</sub> и <i>K</i>55 = Co@Al<sub>12</sub>@Co<sub>12</sub>A<sub>l30</sub>) самосборка кристаллической структуры
Дата публикации
16.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
6

Библиография

  1. 1. Villars P., Cenzual K. Pearson’s Crystal Data-Crystal Structure Database for Inorganic Compounds (PCDIC) ASM International: Materials Park, OH.
  2. 2. Inorganic crystal structure database (ICSD). Fachinformationszentrum Karlsruhe (FIZ), Germany and US National Institute of Standard and Technology (NIST).
  3. 3. He Wei, Zeng Weijing, Lin Guoqiang. Crystal structures of new R3 Co Al3 Ge2 (R = Gd – Er) quaternary compounds and magnetic properties and lattice thermal expansion of Gd3 Co Al3 Ge2 // J. Alloys Compd. 2015 V. 627 P. 307–312.
  4. 4. Zhou Sixuan, Latturner Susan E. Flux growth and magnetic properties of rare earth cobalt germanide, RE6 Co5 Ge1 + x Al3 – x (RE = Pr, Nd; x ~ 0.8) // J. Solid State Chemistry. 2016. V. 238. P. 189–194.
  5. 5. He Wei, Zeng Weijing, Yang Tonghan, Lin Guoqiang. Crystal structure of new R2 T Al4 Ge2 (R = Y, Gd-Er, T = Fe, Co) quaternary compounds and magnetic properties of Gd2 T Al4 Ge2 // J. Alloys Compd. 2015 V. 633. P. 265–271.
  6. 6. Ghimire N.J., Cary S.K., Eley S., Wakeham N.A., Rosa P.F.S., Albrecht-Schmitt T., Lee Y., Janoschek M., Brown C.M., Civale L., Thompson J.D., Ronning F., Bauer E.D. Physical properties of the Ce2 M Al7 Ge4 heavy-fermion compounds (M = Co, Ir, Ni, Pd) // Physical Review, Serie 3. B – Condensed Matter. 2016. V. 93. P. 205141-1.
  7. 7. Sugiyama K., Yubuta K., Yokoyama Y., Suzuki S., Simura R. F – AlCoPdGe alloy with three types of Pseudo-Mackay clusters // Acta Physica Polonica A. 2014 V. 126. P. 588–593.
  8. 8. Doering W., Schuster H.U. Darstellung und Struktur von NaAu3Si und NaAu3Ge. // Zeitschrift fuer Naturforschung, Teil B. Anorganische Chemie, Organische Chemie. 1980. V. 35. P. 1482–1483.
  9. 9. Lin Qisheng, Corbett J.D. Interpenetrating networks of three-dimensional Penrose tiles in CaAu3Ga, the structurally simplest cubic approximant of an icosahedral quasicrystal // Inorg. Chem. 2008 V. 47. P. 3462–3464.
  10. 10. Pham Joyce, Kreyssig Andreas, Goldman Alan I., Miller Gordon J. An icosahedral quasicrystal and its 1/0 crystalline approximant in the Ca–Au–Al system // Inorganic Chemistry. 2016. V. 55. P. 10425–437.
  11. 11. Llanos J., Nesper R., von Schnering H.G. Rb7NaGe8 und K7NaGe8. Zintl-Verbindungen mit Na (Ge4)2-Einheiten // Angewandte Chemie (German Edition). 1983. V. 95. P. 1026–1027.
  12. 12. Lin Qisheng, Corbett J.D. The 1/1 and 2/1 approximants in the Sc–Mg–Zn quasicrystal system: Tricontahedral clusters as fundamental building blocks // J. Am. Chem. Soc. 2006. V. 128. P. 13 268–273.
  13. 13. Berthold Rico, Mihalkovic Marek, Burkhardt Ulrich, Prots Yurii, Amarsanaa Altangerel, Kreiner Guido. Crystal structure, disorder and composition of the 2/1 approximant in the Al–Mg–Zn system revisited // Intermetallics. 2014. V. 53. P. 67–84.
  14. 14. Li M.R., Hovmoeller S., Sun J.L., Zou X.D., Kuo K.H. Crystal structure of the 2/1 cubic approximant Ag42 In42 Yb16 // J. Alloys Compd. 2008. V. 465. P. 132–138.
  15. 15. Pay Gomez C., Lidin S. Structure of Ca13Cd76; a novel approximant to the YbCd5.7 and Ca15Cd85 quasicrystals // Angewandte Chemie (Edition international). 2001. V. 40. P. 4037–4039.
  16. 16. Шевченко В.Я., Блатов В.А., Илюшин Г.Д. Кластерная самоорганизация интерметаллических систем: новый кластер-прекурсор K65 = 0@3@20@42 для самосборки кристаллической структуры Sc96Mg8Zn600-cP704 // Физика и химия стекла. 2022. Т. 42. № 2. С. 94–99.
  17. 17. Blatov V.A., Shevchenko A.P., Proserpio D.M. Applied Topological Analysis of Crystal Structures with the Program Package ToposPro // Cryst. Growth Des. 2014. V. 14. № 7. P. 3576–3585.
  18. 18. Ilyushin G.D. Theory of cluster self-organization of crystal-forming systems. Geometrical-topological modeling of nanocluster precursors with a hierarchical structure // Struct. Chem. 2012. V. 20. № 6. P. 975–1043.
  19. 19. Shevchenko V.Ya., Medrish I.V., Ilyushin G.D., Blatov V.A. From clusters to crystals: scale chemistry of intermetallics // Struct. Chem., 2019. V. 30. № 6. P. 2015–2027.
  20. 20. Ilyushin G.D. Intermetallic Compounds KnMm (M = Ag, Au, As, Sb, Bi, Ge, Sn, Pb): Geometrical and Topological Analysis, Cluster Precursors, and Self-Assembly of Crystal Structures // Crystallography Reports. 2020. V. 65. № 7. P. 1095–1105.
  21. 21. Ilyushin G.D. Intermetallic Compounds NakMn (M = K, Cs, Ba, Ag, Pt, Au, Zn, Bi, Sb): Geometrical and Topological Analysis, Cluster Precursors, and Self-Assembly of Crystal Structures // Crystallography Reports. 2020. V. 65. № 4. P. 539–545.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека