ОХНМФизика и химия стекла Glass Physics and Chemistry

  • ISSN (Print) 0132-6651
  • ISSN (Online) 3034-6134

Зависимость коэффициента Пуассона от состава алмаз-карбид кремниевых композитов «Идеал»

Код статьи
10.31857/S0132665124050028-1
DOI
10.31857/S0132665124050028
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 50 / Номер выпуска 5
Страницы
367-373
Аннотация
Впервые в широком диапазоне размеров зерна технического алмаза от нанометров до сотен микрометров исследована зависимость коэффициента Пуассона алмаз-карбид кремниевого композита «ИДЕАЛ». Обсуждается механизм деформации тела состоящего из частиц с различными коэффициентами объемного термического расширения.
Ключевые слова
алмаз-карбид кремниевый композит «ИДЕАЛ» дисперсный состав коэффициент Пуассона скорость звука
Дата публикации
16.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
3

Библиография

  1. 1. Шевченко В.Я., Перевислов С.Н. Реакционно-диффузионный механизм синтеза в системе алмаз–карбид кремния // Журнал неорганической химии. 2021. Т. 66. № 8. С. 994–1001.
  2. 2. Шевченко В. Я., Орыщенко А.С. О критериях выбора материалов преград механическому динамическому нагружению // Физика и химия стекла. 2021. Т. 47. №.4. С. 365–375.
  3. 3. Шевченко В.Я., Орыщенко А.С., Перевислов С.Н. Об одном фундаментальном свойстве контакта (удара) жестких упругих тел // Физика и химия стекла. 2024 в печати.
  4. 4. Шевченко В.Я., Ковальчук М.В., Орыщенко А.С. Синтез нового класса материалов с регулярной (периодической) взаимосвязанной микроструктурой // Физика и химия стекла. 2020. Т. 46. № 1. С. 3–11.
  5. 5. Shevchenko V.Ya., Makogon A.I., Sychov M.M., Nosonovsky M., Skorb E.V. Reaction–Diffusion Pathways for a Programmable Nanoscale Texture of the Diamond–SiC Composite // Langmuir. 2022. V. 38 (49). P. 15220–15225.
  6. 6. Шевченко В.Я., Перевислов С.Н., Уголков В.Л. Физико-химические процессы взаимодействия в системе углерод (алмаз)–кремний // Физика и химия стекла. 2021. Т 47. № 3. С. 257–272.
  7. 7. Шевченко В.Я., Орыщенко А.С., Беляков А.Н., Перевислов С.Н. Определение механических характеристик керамики “ИДЕАЛ” (композита алмаз–карбид кремния) // Физика и химия стекла. 2023. T. 49. № 6. С. 573–579.
  8. 8. Tanei H., Tanigaki K., Kusakabe K., Ogi H., Nakamura N., Hirao M. Stacking-fault structure explains unusual elasticity of nanocrystalline diamonds // Appl. Phys. Lett. 2009. V. 94. P. 041914.
  9. 9. Hess P. The mechanical properties of various chemical vapor depositiondiamond structures compared to the ideal single crystal // J. Appl. Phys. 2012. V. 111. P. 051101.
  10. 10. Sakaguchi S., Murayama N., Kodama Ya., Wakai F. The Poisson’s ratio of engineering ceramics at elevated temperature // Journal of materials s’cience letters. 1991. V.10. P. 282–284.
  11. 11. Ekimov E.A., Gierlotka S., Gromnitskaya E.L., Kozubowski J.A., Palosz B., Lojkowski W., Naletov A.M. Mechanical Properties and Microstructure of Diamond–SiC Nanocomposites // Inorganic Materials. 2002. V. 38. P. 1117–1122.
  12. 12. Mohr M., Caron A., Herbeck-Engel P., Fecht H.-J. Young’s modulus, fracture strength, and Poisson’s ratio of nanocrystalline diamond films // Journal of Applied Physics. 2014. V. 116.
  13. 13. Wieligor M., Zerda T.W. Surface stress distribution in diamond crystals in diamond – silicon carbide composites // Diamond & Related Materials. 2008. V. 17. P. 84–89.
  14. 14. Okuzono Y., Hirata Y., Matsunaga N., Sameshima S. Young’s Modulus and Poisson’s Ratio of Liquid Phase-Sintered Silicon Carbide // Key Engineering Materials. 2011. V. 484. P. 98–101.
  15. 15. Remediakis I.N., Kopidakis G., Kelires P.C. Softening of ultrananocrystalline diamond at low grain sizes // Acta Mater. 2008. V. 56. P. 5340–5344.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека