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Температурная зависимость микротвердости Ag2S измерена в области тем-
ператур перехода из моноклинной в кубическую кристаллическую модифи-
кацию. Полученные экспериментальные данные обсуждаются с учетом ано-
мально высокой пластичности этого соединения и суперионной природы его 
кубической модификации.
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ВВЕДЕНИЕ

И кристаллические неорганические полупроводники, и неорганические стекла 
образованы ковалентными связями. Именно ковалентными связями обусловлен 
активационный характер электронной проводимости полупроводников и само яв-
ление стеклообразования. Ковалентные связи характеризуются короткодействием 
и направленностью. Этим объясняется высокая хрупкость неорганических полу-
проводников и стекол. Интенсивное развитие гибкой оптроники сформировало 
устойчивую потребность в пластичных полупроводниках и оптических материалах.

Эту нишу, хотя и с некоторыми трудностями, успешно занимают органические 
полупроводники и стеклообразные полимеры. Однако не следует забывать, что они 
также образованы ковалентными связями. Разница состоит в том, что в построении 
этих материалов помимо ковалентных связей активную роль играют взаимодей-
ствия Ван-дер-Ваальса.

Среди неорганических материалов также существуют примеры стекол и кри-
сталлов, в которых взаимодействия Ван-дер-Ваальса играют значительную роль. 
Так в системе P-Se существует соединение P4Se3, образованное замкнутыми моле-
кулами указанного состава, связанными между собой взаимодействиями Ван-дер-
Ваальса. При этом в системе существует протяженная область стеклообразования 
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от чистого селена до состава, содержащего 75 ат. % фосфора [1]. На рис. 1 приведе-
на зависимость микротвердости (по Виккерсу) стекол от приведенной температуры 
T* = (Tg – T)/Tg, где Т – температура проведения измерений (в данном случае – 
комнатная), а Tg – температура стеклования.

Согласно представлениям, изложенным в [2], для всех халькогенидных стекол, 
образованных ковалентными связями, включая стекла системы P-Se с высоким со-
держанием селена, зависимость HV (T*) описывается линейной функцией HV ≅ KT *, 
где К ≈ 4.4 ГПа. Из рисунка видно, что переход из области стеклообразования на 
основе селена к области стеклообразования на основе молекул P4Se3, связанных 
между собой в основном силами Ван-дер-Ваальса и, частично, полимерных цепо-
чек фосфора приводит к тому, что указанное уравнение перестает выполняться. 
При одинаковых значениях Tg микротвердость стекол, основанных не только на 
ковалентных связях, но и на связях Ван-дер-Ваальса, уменьшается в несколько раз. 
Следовательно, можно ожидать появления у них пластичности, причем, как видно 
из рисунка, не связанной с понижением Tg. Конечно, эти стекла не могут иметь 
практического применения из-за своей высокой гигроскопичности. Но они нагляд-
но демонстрируют работоспособность высказанных суждений о роли взаимодей-
ствий Ван-дер-Ваальса в формировании механических свойств стекол.

Вторым примером, демонстрирующим уменьшение микротвердости и увели-
чение пластичности неорганических стекол при появлении в них взаимодействий 
Ван-дер-Ваальса, являются стекла системы Sb2Se3-GeSe2-Ag2Se. В работе [3] пока-
зано, что при увеличении содержания Ag2Se и появлении металлофильных взаимо-
действий Ag-Ag, относящихся к взаимодействиям Ван-дер-Ваальса, наблюдается 
кратный рост пластичности стекол и существенное уменьшение твердости.

Аномально высокой пластичностью обладают и  сами халькогениды сере-
бра [4, 5]. Предлагается два объяснения этого явления. Первое основано на фор-
мировании в этих соединениях металлофильных ненаправленных связей сере-
бро-серебро дополнительно к ковалентным связям серебро-халькоген [3, 6, 7]. 
Второе основано на особенностях моноклинной решетки Ag2S. Структура этой 
решетки может быть представлена, как пакет гофрированных плоскостей. Такое 
представление предполагает возможность межплоскостного скольжения [4, 8]. 
Важность именно металлофильных взаимодействий, а не особенностей кристал-
лической решетки для эффекта аномальной пластичности наглядно демонстрирует 
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Рис.  1. Зависимость микротвердости стекол системы P-Se от приведенной температуры: 
 — стекла на основе Se;  — стекла на основе фосфора;  — стекло состава P-Se. Стрелками 
показано направление увеличения содержания фосфора в стеклах. Экспериментальные данные 
для построения графика взяты из работы [1].



46	 ТВЕРЬЯНОВИЧ, КРАВЧУК﻿

его существование как в кристаллических материалах, так и в стеклообразных ма-
териалах. Это продемонстрировано не только экспериментально, но и теоретиче-
ски. Действительно, в работе [7] показано, что эти взаимодействия существуют как 
в кристаллических халькогенидах серебра, так и в гипотетических молекулярных 
кластерах Ag2nChn, имитирующих аморфный материал. Это подтверждается и са-
мим фактом трехкратного возрастания пластичности халькогенидных стекол при 
введении в их состав 40 мол. % Ag2Se [3]. Вопрос же о роли кристаллической моно-
клинной решетки в пластичности Ag2S требует дополнительного изучения. Такую 
возможность предоставляет существование фазового перехода моноклинного Ag2S 
в кубическую модификацию при 180 °С [9]. Если межслоевое скольжение в моно-
клинной решетке действительно дает вклад в величину пластичности, то при пере-
ходе в кубическую решетку следует ожидать падения пластичности.

МЕТОДИКА ЭКСПЕРИМЕНТА

Синтез. Синтез сульфида серебра проводился из элементарных серебра и серы. 
Качество и марка исходных компонентов следующие: серебро – аффинированное, 
чистота 99.99% (возможные примеси Cu, Pt, Pd, Fe), сера – о.с.ч. 16–4, чистота 
99.9998% (возможные примеси Se, C, Al, P). Исходные компоненты были взвешены 
на аналитических весах с точностью ±10–4 г и помещены в запаянные кварцевые 
ампулы, из которых был откачан воздух до вакуума 10–4 мм рт. ст. Синтез прово-
дили в муфельной печи при температуре 900 °C при постоянном перемешивании 
в течение трех часов. Охлаждение ампул проводилось на воздухе.

Методика измерения пластичности. Измерение механических свойств прово-
дилось на нанотвердомере “НаноСкан‑4D” (разработка НИЦ “Курчатовский ин-
ститут” – ТИСНУМ) методом инструментального индентирования в соответствии 
с рекомендациями стандарта ГОСТ Р 8.748-2011 [10].

Образец помещается во встраиваемый высокотемпературный предметный сто-
лик для нагрева образцов. Конструкция данного столика предусматривает два на-
гревателя (верхний и нижний), обеспечивающих равномерный прогрев образца 
и индентора, и систему внешнего охлаждения для предотвращения температурного 
дрейфа прибора в процессе испытаний [11]. Данная система позволяет стабилизи-
ровать термодрейф расстояния между образцом и индентором до величины меньше 
0.1 нм/с.

В качестве наконечника используется трехгранная алмазная пирамида Беркови-
ча. Максимальная сила нагружения составляет 20 мН. Время нагружения и разгру-
жения – 2.5 с. Время выдерживания при максимальной нагрузке – 10 с.

Измерения механических свойств проведено в диапазоне температур от комнат-
ной (25 °C) до 240 °C. Проводилось две серии испытаний индентированием: с по-
степенным увеличением температуры и с постепенным охлаждением образца. Для 
каждой температуры проводится не менее 10 индентирований. Испытания прово-
дились после достижения заданной температуры и стабилизации системы в течение 
не менее 15 мин.

Метод индентирования [12] заключается в следующем: индентор вдавливается 
в поверхность образца с постоянной скоростью, при достижении заданной на-
грузки индентор отводится в обратном направлении. В процессе такого испыта-
ния производится запись значений нагрузки и соответствующего ей смещения 
индентора.
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Типичная для этого метода экспериментальная кривая в  виде графика 
зависимости нагрузки P от глубины вдавливания h представлена на рис. 2. Она со-
стоит из двух частей, соответствующих процессу нагружения и разгрузки. В рамках 
данного метода твердость H образца определяется уравнением
	 H P Ac= max , 	 (1)
где Ас – площадь проекции отпечатка при максимальном значении приложенной 
нагрузки Pmax (рис. 2).

Значение приведенного модуля упругости рассчитывается следующим образом:
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где константа зависит от формы индентора, а жесткость контакта D рассчитывается 
для кривой разгружения по уравнению

	 D dP dh
P P

= ( ) = max
..	 (3)

Площадь контакта при максимальной нагрузке Ас определяется геометрией ин-
дентора и глубиной контакта hc и описывается так называемой функций формы 
иглы A f hc s= ( ).

Er
* – приведенный модуль упругости. E E vr

* ,= −( )1 2  где E –  модуль Юнга, 
v2 –  коэффициент Пуассона.

Пластичность δ рассчитывалась по уравнению (4), в которое входят общая энер-
гия, затраченная индентером в процессе индентирования (Sp + Se), и энергия Se, 
возвращаемая индентору упругими силами при снятии нагрузки:

	 δ = +( )S S Sp p e . 	 (4)

РЕЗУЛЬТАТЫ ИЗМЕРЕНИЙ И ИХ ОБСУЖДЕНИЕ
Приведенные температурные зависимости δ, H, E *r (рис. 3, 4) свидетельству-

ют о том, что при фазовом переходе Ag2S из моноклинной в кубическую объемно 
центрированную кристаллическую решетку наблюдается падение H, E *r и рост δ. 
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Рис. 2. а – Пример взаимосвязи нагрузки и смещения индентора в процессе индентирования. 
Стрелки указывают направление изменения параметров во времени.  б  – Схематическое 
изображение индентирования. Указаны параметры, использованные в уравнениях (1)–(4).
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Следует также отметить, что температурный гистерезис при проведении измерений 
в режиме нагрева и охлаждения не наблюдается.

Обращает на себя внимание то, что твердость по Берковичу падает до величины 
менее 50 МПа. Это в пять с лишним раз меньше твердости чистого серебра и почти 
в четыре раза меньше твердости алюминия [13].

Ag2S в кубической модификации обладает чрезвычайно высокой пластичностью 
(рис. 4а) вплоть до δ = 0.98. Такой пластичностью при комнатной температуре, 
согласно [14], обладают элементарные металлы Cu, Al, Au, Ni. При этом следует 
учесть, что значения пластичности на рис. 4а определены методом нагрузка–раз-
грузка [уравнение (4)]. Значения пластичности, приведенные в [14], определены 
методом Мильмана из значений коэффициента Пуассона, модуля Юнга и микро-
твердости.

Теоретическим пределом численного значения пластичности является едини-
ца. Такой пластичностью обладают жидкости. Следовательно, для свойств мате-
риала, обладающего пластичностью, близкой к теоретическому пределу, даже не-
значительные ее изменения играют большую роль. Поэтому, чтобы показать зна-
чимость происходящих изменений пластичности Ag2S выше фазового перехода, 
зависимость, приведенная на рис. 4а, приведена на рис. 4б в других координатах. 
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Отложенная по оси ординат величина 1/(1 – δ) имеет физический смысл обратной 
величины упругости.

Таким образом, высказанное ранее и основанное на представлениях, изложен-
ных в [4, 8] предположение не подтвердилось. Пластичность Ag2S при фазовом пе-
реходе не уменьшилась, а увеличилась. И это изменение коррелирует с изменени-
ями твердости и приведенного модуля упругости. Однако следует вспомнить, что 
в кубической объемно центрированной решетке Ag2S число катионных позиций 
в разы превышает число самих катионов [15]. То есть соединение в этой модифи-
кации относится к суперионным проводникам и имеет так называемую расплав-
ленную катионную подрешетку. Поэтому нельзя исключить следующую ситуацию. 
Моноклинная решетка действительно благоприятно сказывается на величине пла-
стичности Ag2S. Однако роль расплавленной катионной подрешетки в этом отно-
шении более существенна. Остается вопрос о степени общности явления повышен-
ной пластичности соединений, имеющих расплавленную катионную подрешетку. 
Во всех ли случаях переход к кристаллической решетке с расплавленной катионной 
подрешеткой сопровождается уменьшением твердости, модуля Юнга и увеличени-
ем пластичности?

Во всяком случае, можно утверждать однозначно, что полученные эксперимен-
тальные данные убедительно свидетельствуют о том, что, несмотря на определяю-
щую роль в явлении аномальной пластичности металлофильных связей, влияние 
на это явление особенностей кристаллической решетки неорганических полупро-
водников с аномальной пластичностью также следует учитывать.

Работа поддержана грантом РНФ № 24-23-00140.
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