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Путем спекания на воздухе в интервале 1000–1300 °C наноразмерных по-
рошков получены керамические композиты (1–x)ZrSiO4–xHfO2 с низкой те-
плопроводностью. Показано, что при температуре 1300 °C композиты пред-
ставляют собой смесь моноклинных твердых растворов HfxZr1–xO2 и SiO2. 
Впервые представлены температурно-концентрационные зависимости тепло-
проводности полученных керамических образцов. С помощью электронной 
микроскопии исследована поверхность разрушения керамических образцов 
после спекания при 1300 °C, методом дилатометрии изучено их термическое 
поведение, оценен температурный коэффициент линейного расширения.
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ВВЕДЕНИЕ

Керамические композитные материалы на основе системы ZrSiO4–HfO2 пред-
лагаются к использованию в качестве матриц для отверждения и изоляции высо-
коактивных отходов (ВАО) от переработки отработавшего ядерного топлива, со-
держащих отдельные изотопы актинид-редкоземельной фракции. Такие матрицы 
должны обладать высокими физико-химическими и физико-механическими ха-
рактеристиками.

Данные о физико-химических и физико-механических свойствах керамических 
композитов на основе системы ZrSiO4–HfO2 в научной литературе отсутствуют. 
Имеются публикации, посвященных циркону, в которых отмечаются как высо-
кая радиационная, термодинамическая и химическая устойчивость керамических 
матриц на его основе [1‒5], так и низкая теплопроводность и высокая стойкость 
к тепловому удару [6]. В обзорной статье по минеральным матрицам [7] отмеча-
ется перспективность керамических матриц на основе циркона для иммобилиза-
ции актинид-редкоземельной фракции ВАО. Кроме того, возможность исполь-
зования циркона для определения возраста, и его устойчивость к химическому 
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и физическому разложению сделали циркон, по-видимому, самым полезным вспо-
могательным минералом в геологических исследованиях [8].

Cинтез наноразмерных порошков-прекурсоров (1–х)ZrSiO4‒хHf(OH)4, их тер-
мическое поведение и получение керамических композитов (1–x)ZrSiO4‒xHfO2 
описаны в  работе  [9]. Было показано, что использование наноразмерных по-
рошков-прекурсоров улучшило спекаемость керамики и дало возможность полу-
чить керамические образцы с высокой микротвердостью (до 26 ГПа). Показано так-
же, что при температуре 1000 °C керамические композиты с мольной долей HfO2 
x = 0.5, 0.7 и 0.8 представляют собой смесь циркона, моноклинных твердых рас-
творов HfxZr1–xO2 и SiO2, образовавшихся вследствие частичного разложения цир-
кона и последующего взаимодействия ZrO2 с HfO2. После спекания порошков при 
1300 °C циркон частично разложился с образованием ZrO2 и SiO2, а керамические 
композиты с мольной долей HfO2 x = 0.5, 0.7 и 0.8 представляют собой смесь моно-
клинных твердых растворов HfxZr1–xO2 и SiO2. Рефлексов ZrSiO4 в этих композици-
ях не наблюдается. Однако все композиции демонстрируют высокие значения ми-
кротвердости по Виккерсу (до 26 ГПа). На основании проведенных исследований 
авторы сделали вывод, что композиты (1–x)ZrSiO4‒xHfO2 и (1–x)ZrSiO4‒xZrO2 не 
являются аналогами при температурах выше 1000 °C, несмотря на изоструктурность 
оксидов циркония и гафния [9].

В настоящем исследовании продолжено изучение свойств керамических ком-
позитов (1–x)ZrSiO4‒xHfO2: теплопроводность, термическое поведение методом 
дилатометрии, поверхность разрушения с помощью электронной микроскопии.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ
Золь-гель-синтез порошков-прекурсоров (1–х)(H2SiO3‒ZrO(OH)2)‒хHf(OH)4, 

где мольная доля х = 0.0, 0.5, 0.7, 0.8 и 1.0, описан в публикации [9]. Полученные 
порошки-прекурсоры прокаливали при 850 °C в течение 2 ч, затем под давлени-
ем 8‒10 МПа запрессовывали в таблетки для спекания на воздухе при 1000, 1200 
и 1300 °C (по 24 ч на каждом этапе) с промежуточными перетираниями для полу-
чения керамических композитов (1–x)ZrSiO4‒xHfO2 [9].

Для проведения рентгенофазового анализа (РФА) керамических образцов по-
сле спекания использовали дифрактометр ДРОН‑3 (Россия). Параметры записи: 
Ni-фильтр, CuKα-излучение (λ = 1.54056 Å), 38 кВ, постоянная времени 1, скорость 
сканирования 1 град/мин.

Термическое поведение образцов после ДСК/ТГ (до 1500 °C) изучали методом 
дилатометрии на дилатометре DIL 402 C (Netzsch). Масса образца составляла около 
25 мг, скорость нагрева ‒ 20 °C/мин.

Поверхность разрушения образцов исследовали с помощью электронного ми-
кроскопа ZEPTOOLS ZEM 18 (Китай).

Теплопроводность образцов определяли посредством лазерной вспышки на 
приборе LFA 457 MicroFlash (Netzsch) в интервале 25‒250 °C.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ
В процессе спекания порошков (1–x)ZrSiO4‒xHfO2, где мольная доля х = 0.0, 

0.5, 0.7, 0.8 и 1.0, при конечной температуре 1300 °C (24 ч) получены керамиче-
ские композиты номинального состава (1–x)ZrSiO4‒xHfO2, рентгеновские диф-
рактограммы которых показаны на рис. 1. Из приведенных дифрактограмм следует, 
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что после спекания при этой температуре на дифрактограмме ZrSiO4 (рис. 1, 1), 
помимо рефлексов циркона, присутствуют рефлексы моноклинного ZrO2 и гек-
сагонального SiO2, что свидетельствует о частичном разложении циркона. Отсут-
ствие рефлексов циркона на дифрактограммах композиций номинального состава 
0.5ZrSiO4–0.5HfO2, 0.3ZrSiO4–0.7HfO2 и 0.2ZrSiO4–0.8HfO2 (рис. 1, 2‒4) указывают 
на полное его разложение. По мере уменьшения концентрации циркона в исход-
ных композициях рефлексы SiO2 исчезают (рис. 1, 4), как и в случае керамиче-
ских композитов (1–x)ZrSiO4‒xZrO2 [10]. Кроме того, близость кристаллических 
структур оксидов циркония и гафния позволяет им образовывать непрерывные 
твердые растворы [9, 11], поэтому рефлексы, обозначенные на рис. 1 как принад-
лежащие HfO2 (дифрактограммы 2‒4) относятся к твердым растворам HfxZr1–xO2.

Таким образом, после спекания при 1300 °C композиты представляют собой 
смесь моноклинных твердых растворов HfxZr1–xO2 и гексагонального SiO2 (квар-
ца). Этот результат представлен и в работе [9].

Поверхность разрушения керамических образцов ZrSiO4 и HfO2, а также компо-
зиций номинального состава 0.5ZrSiO4‒0.5HfO2 и 0.2ZrSiO4‒0.8HfO2, спеченных 
при 1300 °C, показана на рис. 2. Можно сравнить СЭМ‑изображения поверхности 
разрушения керамических образцов HfO2 (рис. 2г) и ZrO2 [10], полученных по пред-
ложенной в работах [9, 12] методике. В обоих случаях наблюдаются мелкие зерна 
неопределенной формы. На рис. 2а, как и в работах [10, 13, 14] на соответствующих 
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Рис. 1. Рентгеновские дифрактограммы образцов номинального состава (1–x)ZrSiO4‒xHfO2 
после спекания порошков при 1300 °C (24 ч), где х = 0.0 (1), 0.5 (2), 0.7 (3), 0.8 (4) и 1.0 (5), 
и штрихдиаграмма HfO2 из базы данных ICDD-PDF‑2 2022.
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СЭМ‑изображениях, наблюдаются зерна циркона неопределенной формы. В рабо-
те [14] приведено СЭМ‑изображение керамического образца ZrSiO4, содержащего 
1 мас. % ZrO2 (температура спекания 1600 °C, выдержка 2 ч). Авторы отметили на 
изображении зерна неопределенной формы, принадлежащие циркону, и мелкодис-
персные зерна, принадлежащие, по данным энергодисперсионного анализа, ZrO2 
и SiO2, свидетельствующие о частичном разложении ZrSiO4.

Из СЭМ‑изображений, представленных на рис. 2, можно сделать вывод, что 
образец номинального состава 0.2ZrSiO4‒0.8HfO2 (рис. 2в) демонстрирует наи-
лучшую кристаллизацию (зерна хорошо сформированы, очерчены их границы). 
По данным РФА, этот образец практически целиком состоит из твердого раствора 
HfxZr1–xO2 (присутствие небольшого количества SiO2 на рентгеновской дифракто-
грамме 4 рис. 1 не наблюдается).

Кривые дилатометрии и соответствующие им зависимости температурного ко-
эффициента линейного расширения (ТКЛР) для некоторых керамических образцов 
показаны на рис. 3. Из представленных на рисунке кривых дилатометрии следует, 
что циркон (кривая 1) при нагревании дает заметную усадку после 1200 °C. Ход кри-
вой 1 очень близок к ходу кривой ZrSiO4 [6, 14], также демонстрирующей заметную 
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Рис. 2. СЭМ‑изображения поверхности разрушения керамических образцов ZrSiO4 (а) и HfO2 
(г) и керамических образцов номинального состава 0.5ZrSiO4‒0.5HfO2 (б), 0.2ZrSiO4‒0.8HfO2 
(в) после спекания при 1300 °C 24 ч.
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усадку после 1200 °C и не достигающей плато вплоть до 1550‒1600 °C. Наименьшую 
усадку претерпевают композиты с бóльшим содержанием оксида гафния (рис. 3, 
кривые 3, 4), как и сам HfO2 (рис. 3, кривая 5). Его ТКЛР изменяется незначитель-
но в пределах температур до 1100 °C (рис. 3, 5ʹ). Средняя величина ТКЛР в интер-
вале 100‒1100 °C соответствует 2.6 × 10–6·K–1. Наиболее близкие к HfO2 по соста-
ву образцы представлены в работах [15, 16]. Так, керамический образец, содержа-
щий 96 мас. % HfO2 и 4 мас. % ZrO2, имел среднюю величину ТКЛР 9.4 × 10–6 K–1 
в интервале температур 900‒1700 °C [15], а образец, содержащий 90 мол. % HfO2 
и 10 мол. % ZrO2, имел ТКЛР 4.3 × 10–6 K–1 при 1100 °C. В работе [17] авторы от-
мечали сильную анизотропию ТКЛР моноклинного HfO2. Минимальное и мак-
симальное расширение, по их мнению, лежат в кристаллографической плостко-
сти a‒c, при этом минимальные значения соответствуют интервалу от 2 × 10–6 K–1 
до –4 × 10–6 K–1, а максимальные ‒ от 8 × 10–6 K–1 до 32 × 10–6 K–1 (при 1750 °C).

Для ZrSiO4 средняя величина ТКЛР в интервале от 100 до 1100 °C соответству-
ет 4.1 × 10–6 K–1 (рис. 3, 1ʹ). Такую же величину ТКЛР (4.0 × 10–6·K–1) фиксирова-
ли авторы статей [18‒20] для интервала от комнатной температуры до 1400 °C или 
5.0 × 10–6 K–1 при 1600 °C [20].

Перегиб на кривых ТКЛР 2ʹ–4ʹ (рис. 3) соответствует переходу моноклинной 
формы твердых растворов HfxZr1–xO2 в тетрагональную. Средняя величина ТКЛР 
этих композиций лежит в интервале (25.7‒23.8) × 10–6·K–1. Полученные данные 
можно также сравнить с данными, опубликованными в [16] для керамического 
образца состава 10% мол. ZrO2–90% мол. HfO2, т. е. близкого по составу к образ-
цу номинальной композиции 0.2ZrSiO4‒0.8HfO2, состоящей из твердого раствора 
HfxZr1–xO2 и небольшого количества SiO2. Величина ТКЛР этого образца соответ-
ствует примерно 4.3 × 10–6 K–1 при 1100 °C [16].

В целом наши данные довольно хорошо согласуются с данными, имеющимися 
в литературе.
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Рис. 3. Кривые дилатометрии (dL/L0) образцов после спекания при 1300 °C (24 ч): (1) ZrSiO4 
(сплошная), (5) HfO2 (штрихдвухпунктирная) и  композитов номинального состава ‒ (2) 
0.5ZrSiO4‒0.5HfO2 (штриховая), (3) 0.3ZrSiO4‒0.7HfO2 (пунктирная), (4) 0.2ZrSiO4‒0.8HfO2 
(штрихпунктирная); и соответствующие кривые ТКЛР (α, 10–3/K–1) – 1ʹ–5ʹ.
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Теплопроводность спеченных керамических образцов (рис. 4) снижается по 
мере повышения содержания HfO2 и, за исключением циркона, слабо зависит от 
температуры. Эти результаты можно сопоставить с немногочисленными данными, 
опубликованными в научной литературе. Например, для индивидуального циркона 
отмечено снижение теплопроводности от 5.1 Вт/(м·К) при комнатной температуре 
до 3.5 Вт/(м·К) при 1000 °C [19, 20]. В нашем случае – от 4.1 до 3.9 Вт/(м·К) (рис. 4, 
верхняя кривая). В статье [21] приведены более высокие значения теплопроводно-
сти циркона: при 298 K (25 °C) ‒ 14.3 Вт/(м·К), которое снижается примерно до 
9 Вт/(м·К) при 500 K (227 °C). Авторы статьи связали высокие значения с низкой 
пористостью полученного образца (плотность образца соответствовала величине 
97.4% от теоретической), поскольку наличие пористости и кислородных дефектов 
приводило к снижению теплопроводности.

В недавно опубликованной работе [22] изучена теплопроводность HfO2 широком 
температурном интервале от 300 до 2000 K (27‒1727 °C), в котором значения тепло-
проводности падают от 11.95 до 1.72 Вт/(м·К). В публикации [23] приведены данные 
по теплопроводности для керамического образца HfO2, полученного спеканием гото-
вого реактива при 1600 °C 5 ч. В температурном интервале от комнатной до примерно 
250 °C теплопроводность снижается от 9 до 5 Вт/(м·К). Наиболее близкие к нашим 
данным (~1.37 Вт/(м·К)) величины теплопроводности представлены в работе [24]. 
Данные получены для синтезированных золь-гель методом наночастиц HfO2, под-
вергнутых затем термообработке при 850 °C на воздухе путем горячего прессования, 
и соответствуют величине ~1 Вт/(м·К) в интервале 300‒775 К (27‒502 °C).
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Рис. 4. Температурная зависимость теплопроводности λ [Вт/(м·К)] керамических образцов 
ZrSiO4 и HfO2, а также образцов номинального состава 0.5ZrSiO4‒0.5HfO2, 0.3ZrSiO4‒0.7HfO2 
и 0.2ZrSiO4‒0.8HfO2 после спекания при 1300 °C 24 ч.
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ЗАКЛЮЧЕНИЕ

Керамические композиты (1–x)ZrSiO4‒xHfO2, где мольная доля x = 0, 0.5, 
0.7, 0.8 и 1.0, полученные спеканием высокодисперсных порошков в интервале 
1000‒1300 °C, показали низкую теплопроводность и низкие ТКЛР. При 1300 °C 
наблюдалось частичное разложение циркона с образованием оксида циркония 
и кремнезема. Установлено, что керамические композиты (1–x)ZrSiO4‒xHfO2 
с x = 0.5, 0.7 и 0.8 представляют собой смесь моноклинных твердых растворов 
HfxZr1–xO2 и гексагонального SiO2 (кварца). Таким образом, в отличие от системы 
ZrSiO4‒ZrO2, оксид гафния не оказывает стабилизирующего действия на циркон. 
Полученные характеристики керамических композитов (1–x)ZrSiO4‒xHfO2 пред-
ставлены впервые для широкого концентрационного интервала.
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