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Получены наночастицы SiO2, модифицированные тремя бифункциональны-
ми силанами: 3-(триметоксисилилпропил)метакрилатом, бис[3-(триметок-
сисилил)пропил]амином и винилтриэтоксисиланом. Успешное прохождение 
модификации было подтверждено методами ИК‑спектроскопии и сканирую-
щей электронной микроскопии. С целью получения покрытий с повышенной 
гидрофобностью модифицированные наночастицы SiO2 были введены в ци-
клоалифатическую эпоксидную смолу. Для улучшения физико-механических 
свойств в состав покрытия с 30 мас. % модифицированных наночастиц SiO2 
были введены наполнители: слюда-мусковит и диоксид титана. Показано, что 
наиболее перспективной добавкой для получения гидрофобных покрытий яв-
ляются модифицированные бис[3-(триметоксисилил)пропил]амином нано-
частицы SiO2. При их введении в эпоксидно-полиметилметоксисилсескви-
оксановую матрицу в количестве 40 мас. % наблюдался наибольший краевой 
угол смачивания – 116°.
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ВВЕДЕНИЕ

Разрушение металлических конструкций под действием естественных про-
цессов биообрастания и коррозии является глобальной проблемой, приводящей 
к уменьшению срока эксплуатации и увеличению финансовых издержек. Одним 
из путей решения данной проблемы является применение защитных покрытий. 
Актуальными направлением в этой области является создание покрытий с низ-
космачиваемой поверхностью, также называемой гидрофобной или супергидро-
фобной. Она характеризуется высокими значениями краевого угла смачивания, 
низкой поверхностной энергией и особой шероховатостью поверхности [1]. Ма-
териалы с гидрофобной/супергидрофобной поверхностью обладают высокой сте-
пенью водоотталкивания и самоочищения [2–4]. Имея низкое сродство к воде, 
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покрытия с гидрофобной поверхностью препятствуют прикреплению морских 
биообрастателей и развитию сложного сообщества микроорганизмов [5–7], а так-
же задерживают адсорбцию молекулярного кислорода и других коррозионных 
агентов [8–10].

В работе [11] были представлены трехслойные полимерные покрытия с добав-
кой наночастиц сажи, краевой угол смачивания которых составлял 163°. Прове-
денные испытания показали высокую стабильность в водной среде и стойкость 
к биообрастанию полученных покрытий. Высокую антикоррозионную стойкость 
показало эпоксидное покрытие с краевым углом смачивания 134°, содержащее на-
ночастицы SiO2 и гексадецилтриметоксисилан [12].

Однако гидрофобные и супергидрофобные покрытия обладают существенным 
недостатками, связанными с низкой механической прочностью и деградацией 
гидрофобного поверхностного слоя вследствие загрязнений различной природы 
(пыль, органические соединения) [13, 14]. Повышение физико-механических ха-
рактеристик покрытия может обеспечить циклоалифатическая эпоксидная матри-
ца, которая обладает высокими показателями прочности при ударе и изгибе, адге-
зии к металлической подложке [15]. Однако покрытия на основе данной матрицы 
обладают низкой скоростью отверждения и хрупкостью [16]. Решить эту проблему 
можно с помощью использования добавки сесквиоксанов, в частности полиметил-
метоксисилсесквиоксана (КО‑830), который уменьшает время отверждения и улуч-
шает физико-механические свойства покрытий [17]. В работе [18] исследование 
покрытий, содержащих эпоксидную смолу и полифенилсилсесквиоксан, показало 
увеличение модуля упругости при изгибе и твердости по сравнению с композицией, 
содержащей только эпоксидную смолу.

Перспективным направлением при разработке гидрофобных/супергидрофоб-
ных покрытий является использование в качестве наполнителя модифицирован-
ных наночастиц. Шероховатость поверхности, необходимая для повышения гидро-
фобности покрытия, обеспечивается присутствием в составе покрытия наночастиц, 
а их дополнительная модификация гидрофобными фрагментами приводит к умень-
шению поверхностной энергии [19, 20].

Наночастицы SiO2, модифицированные различными соединениями, широко 
используются в качестве наполнителей для полимерных связующих [21–23]. Боль-
шое количество поверхностных гидроксильных групп способствует успешной при-
вивке гидрофобных молекул: преимущественно различных силанов [24–26] и фтор-
содержащих соединений [27]. В работе [28] были получены модифицированные 
диметилдихлорсиланом наночастицы диоксида кремния с краевым углом смачи-
вания поверхности 155°.

В качестве перспективных модификаторов для наночастиц SiO2 могут быть 
использованы бифункциональные силаны с общей формулой Y(CH2)nSiX3, где 
n = 1–3, Y – функциональная группа (Cl, NH2, NR2, OH, OCOR, NCO, CH2=CH–, 
SH), X – легко подвергающаяся гидролизу группа (Cl, OR, OCOR) [29].

Соединения с представленным составом широко используются в качестве связу-
ющих агентов в полимерных покрытиях, способствуя повышению прочности свя-
зывания между эпоксидной матрицей и наполнителями. Это способствует улучше-
нию физических и механических свойств покрытий (прочность на изгиб и растя-
жение, модуль упругости при растяжении), а также гидрофобизации поверхности 
покрытий [30–32]. В работе [33] добавки в полиуретановые, эпоксидные и каучу-
ковые матрицы модифицированных 3-(триметоксисилил)пропил метакрилатом 
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наночастиц SiO2 и TiO2 приводили к увеличению гидрофобности и степени шеро-
ховатости поверхности покрытий.

В данной работе в качестве бифункциональных силанов-модификаторов были 
использованы соединения с различными функциональными группами: метакри-
латной (3-(триметоксисилил)пропил метакрилат), вторичной аминной (бис[3-(три-
метоксисилил)пропил]амин) и винильной (винилтриэтоксисилан). В работе [34] 
модифицирование диоксида кремния проводили винилтриэтоксисиланом с обра-
зованием силоксановых связей на поверхности гидрофильного SiO2, при этом кра-
евой угол смачивания покрытия составил 166°. M. D. McConnell с соавторами [35] 
показали, что при введении модифицированных 3-(аминопропил)триэтоксисила-
ном наночастиц SiO2 в полимерную матрицу полистирол-акриловой кислоты крае-
вой угол смачивания поверхности пленки находится в диапазоне 75–120° в зависи-
мости от размера и количества вводимых наночастиц. Авторы связывают такой рост 
гидрофобности с высокой степенью шероховатости поверхности, а также со взаи-
модействием акрилового фрагмента кислоты матрицы с аминными группами на 
модифицированных наночастицах, при этом гидрофобный стирольный фрагмент 
оказывается на поверхности пленки.

Цель нашей работы заключалась в исследовании влияния модифицированных 
бифункциональными силанами наночастиц SiO2 на гидрофобные свойства эпок-
сидных и эпоксидно-полиметилметоксисилсесквиоксановых покрытий.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для получения модифицированных наночастиц SiO2 использовали реагенты без 
дополнительной очистки: SiO2 [AEROSIL® 300 с удельной поверхностью 300 м2·г–1, 
средний размер частиц 5–20 нм (Evonik Industries AG)], аммиак водный (ч. д. а., 
АО  “Вектон”), 3-(триметоксисилил)пропил метакрилат (98%, Sigma-Aldrich), 
бис[3-(триметоксисилил)пропил]амин (≥ 90%, Sigma-Aldrich), винилтриэтоксиси-
лан (99%, JINGZHOU JIANGHAN FINE CHEMICAL CO., LTD), этанол (96.3%, 
ОАО “Кемеровская фармацевтическая фабрика”), толуол (ч. д. а., АО “Вектон”).

Для получения покрытий были использованы: циклоалифатическая эпоксид-
ная смола ST‑3000 с эпоксидным эквивалентом 227.8 г·экв–1 (KUKDO Chemical 
Co., Ltd), полиметилметоксисилсесквиоксан (КО‑830, ООО “Рутесил”), поли
эфирамин T‑403 с эквивалентной массой 81 г·экв–1 (Huntsman Holland B. V.), слю-
да-мусковит (дисперсность <160 мкм, АО “ЛенРеактив”) и TiO2 в кристалличе-
ской модификации рутила (дисперсность <200 мкм, АО “ЛенРеактив”), толуол 
(ч. д. а., АО “Вектон”).

Модификация 3-(триметоксисилил)пропил метакрилатом проводилась в одну 
стадию. К 2.00 г наночастиц SiO2 добавляли 30 мл 3-(триметоксисилил)пропил ме-
такрилата и 20 мл 25%-ного водного раствора аммиака. Реакцию проводили в сре-
де этанола при комнатной температуре и постоянном перемешивании в течение 
24 ч. Полученные целевые наночастицы отделяли от раствора центрифугированием 
(4000 об·мин–1, 20 мин), промывали этанолом и сушили при комнатной темпера-
туре. Аналогично проводили модификацию наночастиц SiO2 винилтриэтоксиси-
ланом.

Модификация наночастиц SiO2 бис[3-(триметоксисилил)пропил]амином 
проводилась также в  одну стадию. К  3.00  г наночастиц SiO2, диспергирован-
ных в этаноле, добавляли бис[3-(триметоксисилил)пропил]амин при массовом 
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соотношении 1:3. Полученную смесь выдерживали при комнатной температуре 
в течение 24 ч при постоянном перемешивании. После окончания реакции мо-
дифицированные наночастицы отделяли центрифугированием (4000 об. мин–1, 
20 мин), промывали этанолом и сушили при комнатной температуре.

Для получения эпоксидных и эпоксидно-полиметилметоксисилсесквиоксано-
вых покрытий предварительно были изготовлены композиции, содержащие цикло-
алифатическую эпоксидную смолу и наполнители в толуоле или этаноле. В барабан 
объемом 0.5 л загружали фарфоровые шары объемом 0.15–0.2 л, циклоалифатиче-
скую эпоксидную смолу (50–80 мас. %), модифицированный SiO2 (20–40 мас. %) 
и этанол (80 мас. %) или циклоалифатическую эпоксидную смолу (50 мас. %), мо-
дифицированный SiO2 (30 мас. %), слюду-мусковит (15 мас. %), TiO2 (5 мас. %) 
и этанол (50 мас. %) или циклоалифатическую эпоксидную смолу-полиметилме-
токсисилсесквиоксан (в соотношении 75–25 мас. % соответственно), модифици-
рованный SiO2 (20–40%) и толуол (50 мас. %). После 48 ч вращения шаровой мель-
ницы полученную суспензию выгружали. Массовую долю нелетучих компонентов 
определяли согласно методике1.

Покрытия получали введением в полученные композиции рассчитанного ко-
личества отвердителя полиэфирамина T‑403 (40 мас. % в расчете на эпоксидную 
смолу) или смеси отвердителей: тетрабутоксититана (2 мас. % в расчете на поли-
метилметоксисилсесквиоксан) и полиэфирамина Т‑403 (40 мас. % в расчете на 
эпоксидную смолу) и наносили тонким слоем на предметное стекло (76×26×1 мм) 
для измерения твердости и краевого угла смачивания, алюминиевые пластины 
(100×100×1.5 мм, Амг2М, ООО “АПС”) для измерения прочности при ударе и ад-
гезии, алюминиевую ленту (20×150×0.2 мм, А5М, ООО “АПС”) для измерения 
прочности при изгибе. Краевой угол смачивания был измерен с использованием 
гониометра ЛК–1 (ООО “НПК Открытая наука”). Твердость покрытий определя-
ли на маятниковом приборе 2124 ТМЛ (ООО “ЗИП”)2. Адгезию покрытия к ме-
таллу определяли методом решетчатых надрезов с помощью адгезиметра-решетки 
“Константа АР” (ООО “К-М”)3. Размер решетки составил 3×3 мм при толщине по-
крытий от 121 до 250 мкм. Прочность покрытия при ударе определяли с помощью 
измерителя прочности “NOVOTEST Удар У1” (ООО НТЦ “Промтехнологии”)4.

Прочность покрытия при изгибе вокруг цилиндрического стержня определена 
с помощью прибора “Константа ШГ 1” (ООО “К-М”)5.

ИК‑спектры были записаны с помощью ИК-Фурье-спектрометра. ИК‑спектры 
твердых веществ были сняты на ИК-Фурье-спектрометре ФСМ 2201 (ООО “Ин-
фраспек”) в спектральном диапазоне 4000–400 см–1. Электронные микрофотогра-
фии были получены с использованием сканирующих электронных микроскопов 
TESCAN VEGA 3 SBH (TESCAN).

1	 ГОСТ 31939-2012. Материалы лакокрасочные. Определение массовой доли нелетучих ве-
ществ.

2	 ГОСТ Р 52166-2003. Материалы лакокрасочные. Определение твердости покрытия по вре-
мени уменьшения амплитуды колебаний маятника.

3	 ГОСТ 31149-2014. Материалы лакокрасочные. Определение адгезии методом решетчатого 
надреза.

4	 ГОСТ 4765-73. Материалы лакокрасочные. Метод определения прочности при ударе.                                                                                                                              
5	 ГОСТ 6806-73. Материалы лакокрасочные. Метод определения эластичности пленки при 

изгибе.                                                                                                                                
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ОБСУЖДЕНИЕ И РЕЗУЛЬТАТЫ
Во всех случаях модификации функционализация наночастиц диоксида крем-

ния происходила за счет образования силоксановой связи –Si–O–Si– в результате 
взаимодействия фрагментов –Si(OCH3)3 в случае 3-(триметоксисилил)пропил ме-
такрилата и бис[3-(триметоксисилил)пропил]амина и фрагмента –Si(OCH2CH3)3 
винилтриэтоксисилана и  силанольных групп наночастиц диоксида кремния 
(рис. 1). В результате были синтезированы наночастицы SiO2, модифицированные 
бифункциональными силанами.

Во всех ИК‑спектрах исходного SiO2 (рис. 2а, 3а, 4а) интенсивная полоса при 
1108–1082 см–1 соответствует валентным колебаниям ν(Si–O) связей. Полосу в об-
ласти 811–800 см–1 следует отнести к деформационным колебаниям δ(Si–O) групп.

После прохождения модификации 3-(триметоксисилил)пропил метакрилатом 
(рис. 2б) в спектре наблюдалось появления новых полос в области 1721 см–1, ко-
торая относится к валентным колебаниям связи ν(С=O) фрагмента метакрилата. 
Полоса в области 2961 см–1 относится к валентным колебаниям метильной группы 
ν(CH3). В спектре модификатора 3-(триметоксисилил)пропил метакрилата поло-
сы в области 1084 см–1, 1453 см–1, 2841 см–1 принадлежат различным колебани-
ям фрагментов группы –SiOCH3: деформационным колебаниям связи δ(O–CH3) 
(1453 см–1), валентным колебаниям группы ν(SiOCH3) (2841 см–1). В процессе мо-
дификации группа –SiOCH3 подвергается гидролизу и в спектре целевых нано
частиц полосы, соответствующие данной группе, не наблюдаются.

После проведения модификации бис[3-(триметоксисилил)пропил]амином на-
блюдалось появление полос в областях 694 см–1, 1473 см–1, 1417 см–1 по сравнению 
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с немодифицированным SiO2 (рис. 3б), которые следует отнести соответственно 
к деформационным колебаниям группы δ(CH2), связи δ(С–H) и δ(С–N). В обла-
сти 2940–2937 см–1 спектров исходного модификатора бис[3-(триметоксисилил)
пропил]амина и модифицированных частиц наблюдались полосы, соответствую-
щие валентным ассиметричным колебаниям группы νas(СH2) пропильного фраг-
мента. В спектре модификатора полосу при 2839 см–1 следует отнести к колебани-
ям группы –SiOCH3. В спектрах SiO2 и SiO2–БТМСПА широкая полоса в области 
3420–3400 см–1 соответствует валентным колебаниям ν(OH) групп. В спектрах мо-
дифицированных частиц наличие данной полосы может быть связано с непрореа-
гировавшими группами –ОН на поверхности диоксида кремния.

После модификации винилтриэтоксисиланом также наблюдается появление 
полосы при 3063–3062 см–1, которая соответствует валентным колебаниям ν(СH2) 
винильных групп (рис. 4б). Эта же полоса наблюдается в ИК-спектре модифика-
тора винилтриэтоксисилана. Полосу в спектрах модификатора и модифицирован-
ных частиц при 1602 см–1 следует отнести к валентным колебаниям двойной связи 
ν(С=С) в винильном фрагменте.

Таким образом, появление новых полос в спектрах образцов наночастиц SiO2 
подтверждает успешное прохождение модификации.

После прохождения модификации наблюдалось изменение морфологии нано-
частиц, образование более плотной и однородной структуры (рис. 5).

С целью получения гидрофобных покрытий модифицированные наночасти-
цы SiO2 были введены в циклоалифатическую эпоксидную матрицу в количестве 
20–50 мас. % (табл. 1). Массовая доля нелетучих компонентов во всех составах со-
ставила 20%.
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Во всех составах наблюдалась корреляция: с увеличением количества наноча-
стиц твердость покрытий существенно уменьшалась. Образцы с содержанием на-
ночастиц SiO2–ТМСПМА в количестве 20 мас. % показали наибольшее значение 
твердости.

Введение 40 мас. % немодифицированного SiO2 в циклоалифатическую эпок-
сидную матрицу приводит к получению покрытий с краевым углом смачивания, 
равным 61°. Введение модифицированного SiO2 бис[3-(триметоксисилил)пропил]
амином позволяет повысить гидрофобность эпоксидного покрытия. Наибольший 
угол смачивания (93°) был достигнут в случае состава с содержанием частиц SiO2–
БТМСПА в количестве 30 мас. %.

Для улучшения физико-механических характеристик покрытий в  составы, 
содержащие 30 мас. % модифицированных SiO2, были дополнительно введены 
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Рис. 5. Электронные изображения поверхности наночастиц SiO2: немодифицированных (а), 
модифицированных ТМСПМА (б), БТМСПА (в), ВТЭОС (г).
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наполнители: TiO2 (5 мас. %) и слюда-мусковит (15 мас. %) (табл. 2). Введение на-
полнителей не привело к существенному увеличению гидрофобности. Покрытие на 
основе модифицированных винилтриэтоксисиланом наночастиц SiO2 показало хо-
рошую твердость, адгезию и прочность при изгибе, а наибольший угол смачивания 
(97°) среди представленных образцов показало покрытие с модифицированными 
бис[3-(триметоксисилил)пропил]амином наночастицами SiO2.

С целью сокращения времени отверждения эпоксидных покрытий, снижения их 
хрупкости и улучшения внешнего вида в составы с содержанием 20, 30 и 40 мас. % 
модифицированных частиц SiO2 был введен полиметилметоксисилсесквиоксан, 
в соотношении с эпоксидной смолой 25–75 мас. % соответственно (табл. 3). По-
лученные покрытия отверждались менее чем за 24 ч и характеризовались гладкой 
поверхностью без растрескиваний.

Покрытие без модифицированных частиц диоксида кремния, с  содер-
жанием эпоксидной смолы 25 мас.  % и  полиметилметоксисилсесквиоксана 
75 мас. % имело краевой угол смачивания равный 91°. При введении в состав 

Таблица 1. Краевой угол смачивания и твердость эпоксидных покрытий, содержащих моди-
фицированные бифункциональными силанами наночастицы SiO2

SiO2, 
мас. % Модификатор SiO2

Эпоксидная 
смола Твердость

Краевой угол 
смачивания, 

град.
20

Винилтриэтоксисилан

80 0.58 56
30 70 0.58 55
40 60 0.46 80
50 50 0.20 74
20

Бис[3-(триметоксисилил)-
пропил]амин

80 0.43 55
30 70 0.29 93
40 60 0.15 91
50 50 0.14 73
20

3-(триметоксисилил)пропил 
метакрилат

80 0.68 73
30 70 0.64 72
40 60 0.53 71
50 50 0.39 75

Таблица 2. Физико-механические характеристики эпоксидных покрытий (50 мас. % эпок-
сидной смолы) с наполнителями слюда-мусковит (15 мас. %), TiO2 (5 мас. %) и модифици-
рованными бифункциональными силанами наночастицами SiO2 (30 мас. %)

Модификатор SiO2
Твердость, 

усл. ед.
Адгезия, 
баллов

Прочность 
при ударе, 

см

Прочность 
при изги-

бе, мм

Краевой 
угол смачи-
вания, град.

Винилтриэтоксисилан 0.51 1 25 1 78
Бис[3-(триметоксисилил)- 

пропил]амин 0.18
2

10
> 20

97

3-(триметоксисилил)-
пропил метакрилат 0.38 25 77
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SiO2 модифицированных бис[3-(триметоксисилил)пропил]амином в количестве 
30 мас. % наблюдалось увеличение краевого угла смачивания до 115° при сохра-
нении приемлемой твердости покрытия. Это может быть связано с увеличением 
шероховатости поверхности покрытия за счет высокого содержания модифициро-
ванных наночастиц диоксида кремния. При этом изначально полярная вторичная 
аминогруппа реагирует с эпоксидными группами полимерной матрицы [36], что 
уменьшает ее вклад в увеличение гидрофильности и способствует более прочной 
сшивки компонентов покрытия. Более высокий угол смачивания в случае компо-
зиции с полиметилметоксисилсесквиоксаном может быть связан с образованием 
микро- и наноструктурной шероховатости на поверхности покрытия, а также с ги-
дрофобностью самого полиметилметоксисилсесквиоксана.

ЗАКЛЮЧЕНИЕ

На основании полученных результатов можно заключить, что наночастицы 
SiO2, модифицированные бис[3-(триметоксисилил)пропил]амином, являются наи-
более перспективными для использования в качестве гидрофобной добавки для по-
крытий на основе эпоксидной матрицы.

Увеличение шероховатости поверхности за счет большого содержания наноча-
стиц в покрытии, а также структура самого модификатора способствует увеличению 
гидрофобности полученных эпоксидных покрытий. Добавка полиметилметоксисил-
сесквиоксана не только способствует уменьшению времени отверждения и улучше-
нию внешнего вида, но и повышению гидрофобности эпоксидного покрытия.
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