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Исследованы анион-дефицитные структуры на основе состава 
Sr0.5Ba0.5Со1–xFexO3–δ, синтезированные из расплава в солнечной печи в потоке 
концентрированного солнечного излучения плотностью 100–200 Вт/см2. Бри-
кеты в виде таблеток на основе стехиометрической смеси карбонатов и окси-
дов соответствующих металлов (SrСО3 + BaСО3 + Со2О3 + Fe2O3) расплавля-
лись на фокальной зоне Большой солнечной печи. Капли расплава стекали 
в воду, охлаждаясь со скоростью 103 град/с. Отливки измельчали до тони-
ны 63 мкм, сушили при 400 °C, формовали в таблетки (образцы) диаметром 
20 мм и высотой 10 мм. Образцы материала спекали в интервале температур 
1050–1250 °C. На образцах изучали структуру, водопоглощение и деструкцию 
в среде углекислого газа. Кристаллическая решетка материала имела струк-
туру перовскита с параметром элементарной ячейки а = 4.04 Å. Образцы ма-
териала показали стойкость к воздействию паров воды. Наблюдаемые зна-
чения структурных параметров свидетельствуют о том, что материал состава 
Sr0.5Ba0.5Со0.8Fe0.2O2.78 может быть использован в качестве катализатора гене-
рации водорода и синтез-газа посредством риформинга и окисления метана.
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ВВЕДЕНИЕ
В фундаментальной триаде “состав–структура–свойства” можно проследить 

проявление уникальных свойств (высокотемпературная сверхпроводимость, магни-
тосопротивление, сегнетоэлектричество, каталитическая активность) материалов 
со структурой перовскита АВО3 [1–5]. Благодаря этому такие материалы широко 
используются в различных перспективных областях [6–8]. Например, при получе-
нии синтез-газа [9–10].
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Из класса перовскитов можно выделить анион-дефицитные структуры ABO3–δ 
с переходными металлами в B‑позициях (Mn, Fe, Co, Ni, Cu). Особенностью та-
ких структур, например Sr0.5Ba0.5Co1–xFexO3–δ, является смешанная кислородно-
электронная проводимость, что позволяет использовать их в качестве кислородно-
обратимых (ABO3–δ + 1/2δO2 ↔ ABO3) электродных материалов, заменяющих до-
рогостоящую платину в твердооксидных топливных элементах (ТОТЭ).

Кислород проницаемые мембраны, представляют большой интерес как удешев-
ляющие процесса получения синтез-газа и сорбенты со 100% селективностью по 
кислороду [11–15]. Интерес к материалам этого класса особо возрастает в условиях 
бурно развивающейся водородной энергетики [16, 17]. Однако этот материал хоро-
шо взаимодействует с углекислым газом и разлагается на карбонаты и оксиды, что 
ограничивает его применимость [18]. Перовскиты используются в твердооксидных 
топливных элементах для преобразования химической энергии в электричество. 
При этом такие устройства имеют высокий КПД (более 80%) и очень низкий уро-
вень выбросов вредных газов. с высокой эффективностью, низким уровнем выбро-
сов и топливной гибкостью. Кроме того, перовскиты успешно применяются в мем-
бранных реакторах на основе кислород проводящих мембран. Такие устройства 
совмещают разделение и химические реакции в одном блоке [19].

В работе [20] показано, что кислород проводящие материалы на основе фосфо-
гипса значительно повышают эффективность получения обогащенного водородом 
синтез-газа (установлено 72.51%) при температуре реакции около 1023 К.

В данной работе исследовался материал состава Ba0.5Sr0.5Сo1–xFexO3–δ, синтези-
рованного на солнечной печи.

МЕТОДИКА ЭКСПЕРИМЕНТОВ
Концентрированный поток солнечного излучения посредством зеркально кон-

центрирующих систем широко используется для нагрева, обработки и плавления 
большого круга материалов. Например, Большая солнечная печь (БСП) тепловой 
мощностью 1 МВт недавно использовалась для извлечения металлов из промыш-
ленных отходов [21], водорода из воды [22]. Технологические возможности БСП 
также использовались для синтеза высокотемпературных материалов [23].

Из смесей оксидов железа и  кобальта с  карбонатами бария и  стронция 
BaCO3 + SrCO3 + Fe2O3 + Co2O3 в стехиометрическом соотношении после измель-
чения (63 мкм) и формования методом полусухого прессования (100 МПа) изготав-
ливали образцы в виде цилиндра ∅ 20 мм, которые устанавливали на водоохлаж-
даемую плавильную установку, расположенную в фокальной плоскости солнечной 
печи. На образец направляли концентрированный поток солнечного излучения 
с плотностью порядка Q = 150 Вт/см2. Это значение плотности потока по закону 
Стефана Больцмана

	 T Q= εσ4 ,

где Q – плотность потока концентрированного потока солнечного излучения, 
250  Вт/см2, ε  – коэффициент излучения, σ  =  5.67·10–8  Вт/м2К  – постоянная 
Больцмана, соответствует температуре нагретого тела 2200 К. При этой температу-
ре образец плавится, а капли расплава падают в воду и охлаждаются со скоростью 
103 град/с. Такие условия охлаждения позволяли зафиксировать высокотемпера-
турные структурные состояния материала.
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Капли расплава, погруженные в воду, раскалывались на мелкие стекловидные 
частицы произвольной формы. Закаленный в воду расплав измельчали ​​до крупно-
сти 60 мкм и формовали в цилиндры диаметром 8 мм и высотой 2 мм. Цилиндри-
ческие образцы спекали при разных температурах.

Рентгенофазовый анализ образцов полученных материалов проводили на ди
фрактометре Panalytical Empyrean с программным обеспечением в геометрии отра-
жения Брэгга–Брентано с CuKα-излучением (λ = 1.5418 Å). Данные были получены 
между 10 и 64° с шагом 0.5°.

Для изучения морфологии и микроструктурных особенностей образцов матери-
алов использовали метод сканирующей электронной микроскопии (СЭМ).

Термогравиметрические (ТГ) кривые были получены на приборе TG50 либо 
на воздухе при скорости нагревания 10 °C/мин с использованием примерно 50 мг 
образца.

Температурный коэффициент теплового расширения измеряли на катетометре 
в  диапазоне температур 300–1250 К.  Электрическое сопротивление измеряли 
четырех-контактным методом в интервале температур 300–1300 К.

Кажущаяся плотность образцов составляла 4.74 г/см³ при нормальных 
условиях.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ
Нами были изучены структуры перовскитов Ba0.5Sr0.5Co0.8Fe0.2O3–δ, синтезиро-

ванные из расплава в солнечной печи.
Рентгенограмма образца материала состава Sr0.5Ba0.5Co0.8Fe0.2O2.78, полученного 

синтезом из расплава на солнечной печи, показана на рис. 1.
Анализ рентгенограмм показал, что полученный материал заданного состава 

имеет кубическую структуру с параметром решетки a = 4.04 Å пространственной 
группы Рm3m.

Также выявлено, что для таких структур характерна значительная стехиометрия 
по кислороду. Оцененная область гомогенности полученных сложных составов 
Sr0.5Ba0.5Co1–xFexO3–δ лежит в интервале x = 0.0–0.7. Средний размер кристалли-
тов полученных материалов составляет 25–35 мкм.
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Рис. 1. Рентгенограмма образца материала состава Sr0.5Ba0.5Co0.8Fe0.2O2.78, полученного синтезом 
из расплава на солнечной печи.
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Далее нами изучен материал состава Sr0.5Ba0.5Co0.8Fe0.2O2.78, как наиболее опти-
мальный по отношению структуры. На рис. 2 и 3 приведены зависимости усадки 
и кажущейся плотности материала от температуры спекания.

Как видно из рис. 2 и 3, при повышении температуры спекания керамики на-
блюдается увеличение усадки и кажущейся плотности.

На рис. 4 и 5 приведены зависимости электрического сопротивления и водопо-
глощения образца материала от температуры спекания.

Как видно из рис. 4, с ростом температуры наблюдается возрастание электри-
ческого сопротивления, т. е. образцы материала демонстрируют полупроводнико-
вый характер с электронным механизмом проводимости, в то время как повышение 
температуры спекания керамики до 1200 °C вызывает уменьшение водопоглоще-
ния.

На рис. 6 приведена микроструктура образца материала, спеченного при 1100 
и 1250 °С. Из рис. 6 видно, что средний размер кристаллитов зерен составляет 30–40 
мкм. Причем зерна имеют форму преимущественно сферолитов и искривленных 
цилиндров.

На рис. 7 приведена температурная зависимость электрической проводимо-
сти образа материала, спеченного при 1250 оС. Как видно, электрическая прово-
димость на постоянном токе увеличивается с повышением температуры. Можно 
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Рис. 2. Зависимость усадки от температу
ры спекания.
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Рис. 3. Зависимость плотности от темпе
ратуры спекания.
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Рис. 4. Зависимость электрического со
противления от температуры спекания.

6

4

2

12

10

8

1000 1100
Температура спекания, °С

1150 1200 1250

Во
до

по
гл

ощ
ен

ие
, %

Рис. 5. Зависимость водопоглощения от 
температуры спекания.
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предположить, что механизм электрической проводимости связан с прыжками 
поляронов. По-видимому, при достаточно большой тепловой энергии электроны 
пересекают барьер и участвуют в прыжках. С одной стороны, с увеличением темпе-
ратуры скорость успешных прыжков увеличивается, что, в свою очередь, приводит 
к увеличению проводимости [23]. С другой стороны, повышение температуры так-
же стимулирует увеличение количества вакансий, которые априори ответственны 
за увеличение проводимости по модели скачкообразной релаксации [24].

Согласно работам [23, 24], механизм электрической проводимости перовски-
тового материала состава Sr0.5Ba0.5Co0.8Fe0.2O2.78 является электронным и связан 
с прыжками поляронов.

Как показывает анализ данных [25], добавка водорода в топливные смеси спо-
собна существенно повысить КПД двигателей внутреннего сгорания, снизить хи-
мический недожог и уменьшить содержание вредных примесей в отходящих газах. 
В этом отношении перспективной технологией, позволяющей получать водородсо-
держащее топливо с высокой концентрацией водорода без примесей оксидов угле-
рода, является каталитический пиролиз углеводородов
	 CH4 → 2H2 + C.

100 мкм 100 мкм

а б
Рис. 6. Микроструктура образца материала состава Sr0.5Ba0.5Co0.8Fe0.2O2.78, спеченного при 
1100 °С (а) и 1250 °С (б).
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Рис. 7. Температурная зависимость электрической проводимости образца, спеченного при 
1250 °С.
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Пиролиз проводят с использованием проточной каталитической установки 
Autoclave Engineers BTRS-Jn в трубчатом металлическом реакторе при температуре 
процесса 675 °C и давлениях 1 и 5 атм.

Из приведенной реакции видно, что помимо водорода в ходе данного процесса 
образуется также углерод. По всей видимости, получаемый при этом углерод пред-
ставляет собой нановолокнистый продукт с уникальными физико-химическими 
свойствами [26].

Следуя выводам работ  [25, 26], можно предположить, что состав 
Sr0.5Ba0.5Co0.8Fe0.2O2.78 может быть использован как катализатор при получении 
водорода посредством риформинга и окислении метана:
	 H2O + CH4 → CO + 3H2; CO2 + CH4 → 2CO + 2H2;
	 CH4 + (1/2) O2 → CO + 2H2; CH4 + 2O2 → CO2 + 2H2O.

Предварительные опыты получения синтез-газа показали, что перовскитные 
структуры композиции по эффективности не уступают фосфогипсу. Однако реали-
зация таких подходов требует разработки и создания специального оборудования, 
позволяющего контролировать потоки газов и воды в реакционную камеру, облучае-
мой концентрированным потоком солнечного излучения высокой плотности [27, 28].

ЗАКЛЮЧЕНИЕ
Таким образом, методом синтеза из расплава на солнечной печи в потоке кон-

центрированного солнечного излучения плотностью 100–200 Вт/см2 могут быть 
получен материал с кубической структурой Sr0.5Ba0.5Со0.8Fe0.2O2.78 с параметром 
элементарной ячейки a = 4.04 Å.

Показано, что такой материал проявляет стойкость к воздействию водяных па-
ров, имеет низкое водопоглощение.

Выявлено, что механизм электрической проводимости перовскитового мате-
риала состава Sr0.5Ba0.5Co0.8Fe0.2O2.78 является электронным и связан с прыжками 
поляронов.

Сделано предположение о том, что Sr0.5Ba0.5Co0.8Fe0.2O2.78 может быть исполь-
зован как катализатор при получении водорода посредством риформинга и окис-
лении метана.
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