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В работе приводятся экспериментальные результаты по получению объемных 
образцов материалов Ti-Al-B4C методом “холодного” газодинамического на-
пыления из смеси монопорошков в системе раздельно работающих дозато-
ров, с последующей термической обработкой. Изучены и апробированы па-
раметры, позволяющие разработать эффективные методы создания изделий 
аддитивным способом. Практически и теоретически показано, что металли-
ческие пластичные частицы в составе заготовки-прототипа, сформирован-
ной методом “холодного” газодинамического напыления, могут выступать 
прекурсорным компонентом для образования высокотемпературных боридов 
и карбидов титана, что после тепловой обработки приводит к упрочнению 
объемного композиционного материала при отсутствии значительной усадки, 
сохранении низкой пористости и сплошности структуры.
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1. ВВЕДЕНИЕ

За последние 10  лет аддитивные технологии пережили значительный рост 
в технологической сфере и использовались для прямого производства деталей 
в автомобильной, аэрокосмической и биомедицинской отраслях [1–6]. В насто-
ящее время такие технологии применяются на производственных линиях наря-
ду с традиционными. По сравнению с другими методами производства аддитив-
ные технологии технологически более выгодны при создании изделий сложной 
геометрической формы. Наиболее распространенными являются аддитивные 
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технологии выращивания раскаткой сферических порошков с лазерным сплавле-
нием (SLS) [7–9] или наплавкой из проволоки (FDM). Однако аддитивная печать 
керамики на сегодняшний день активно исследуется, но широкого применения 
в производстве пока не получила.

Метод “холодного” газодинамического напыления (ХГДН, “холодное” напыле-
ние) представляется перспективным [12, 13] и может быть применим в 3D‑печати. 
В частности, его можно потенциально использовать в производстве аддитивных 
технологий инженерных компонентов, а также в ремонтно-восстановительных ра-
ботах без использования лазерных установок. До настоящего момента метод ХГДН 
активно и комплексно изучается, применительно к нанесению покрытий [14–21]. 
Однако в доступной научной литературе не приводится системной информации 
о разработках в области создания объемных ХГДН‑материалов.

Вредные эффекты окисления, фазового превращения, разложения, роста зерен 
и других процессов могут быть минимизированы из-за низкой температуры про-
цесса напыления, по сравнению с традиционным термическим напылением или 
лазерной наплавкой [22–24]. Данные преимущества выделяют ХГДН при изготов-
лении аддитивного материала для большинства пластичных металлов, сплавов, 
композитов с металлической матрицей, а также наноструктурированных металли-
ческих материалов [25–28]. К тому же рост толщины покрытий ХГДН практиче-
ски не имеет ограничений. Следует отметить, что напрямую керамические частицы 
не напыляются “холодным” напылением из-за отсутствия пластических свойств 
при соударении с подложкой. Однако применение композиционных многокомпо-
нентных порошков с последующим регулированием фазового состава формируе-
мой поверхности за счет термического воздействия, открывает новые возможности 
в получении как покрытий, так и объемных изделий с керамической или интерме-
таллидной матрицей.

Целью данной работы является обоснование результатов исследований по апро-
бации получения объемных образцов новых высокотемпературных материалов си-
стемы Ti-Al-B4C методом прототипирования за счет использования преимуществ 
“холодного” газодинамического напыления из смеси порошков в системе раздель-
но работающих дозаторов, с последующей термической обработкой.

2. ОБЪЕКТ И МЕТОДИКА ИССЛЕДОВАНИЙ

В  качестве исходных порошковых материалов использован порошок ти-
тана марки ПТОМ‑1 (ТУ‑14-22-57-92), порошок алюминия Al марки А10-00 
(ТУ 1791-001-40707672-2010), порошок карбида бора B4C (ГОСТ 5744-85). Общий 
вид частиц порошка и распределение фракционного состава можно наблюдать на 
рис. 1.

В результате применения метода “холодного” газодинамического напыления 
были изготовлены объемные образцы-цилиндры диаметром 10 ± 1 мм и высотой 
30 ± 1 мм с композиционной структурой на основе Ti-Al-B4C.

Автоматизация создания объемного объекта заключалась в  использовании 
устройства с установленной платформой с плоской поверхностью, обеспечивающе-
го равномерное вращение, при этом непосредственно контролируется направление 
роста материала, переносимого сверхзвуковым потоком при ручном управлении.

Общий вид выращенного образца объемного материала после реализации ХГДН 
представлен на рис. 2.
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Рис. 1. Исходные порошки: а – Ti; б – Al; в – B4C; г – гранулометрический состав.

а б в
Рис. 2. Изготовление образца объемного материала: а – образец в процессе выращивания 
методом ХГДН;  б  – механическая обработка образца, удаление неровностей по диаметру 
цилиндра; в – вид образца после механической обработки.
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После выращивания образцы были обработаны на токарном станке для устране-
ния шероховатости. Однако следует отметить, что для получения высокой точности 
геометрии необходимо производить дополнительную механическую обработку. Для 
исследования структуры производился вырез образца в поперечном сечении, пер-
пендикулярно газовому потоку, с последующим изготовлением шлифа.

На основании ранее проведенных исследований [29] были установлены наибо-
лее рациональные режимы построения. Определено, что скорость сканирования 
10–20 мм/с, шаг сканирования 1.5–2.0 мм, позволяет создавать послойно адди-
тивный материал с минимальными перепадами по высоте, т. е. минимизируются 
неровности от единичных треков. Схема процесса создания аддитивных образцов 
представлена на рис. 3. Скорость потока газа составляла 600 м/с. Расстояние до 
подложки 7–10 мм.

Для исследования порошковых материалов и получения слоев аддитивного ма-
териала использовалось технологическое и аналитическое оборудование:

	؏ “Димет‑403”, для реализации метода “холодного” газодинамического напы-
ления;

	؏ печь вакуумная Nabertherm, для проведения высокотемпературной термо-
обработки;

	؏ Malvern Mastersizer 2000, анализатор для определения гранулометрического 
состава порошков;

	؏ Rigaku Ultima IV, рентгеноструктурный качественный и количественный 
фазовый анализ;

	؏ Tescan VEGA II, проведение рентгеноспектрального микроанализа (РСМА) 
элементного состава порошков и функциональных покрытий.
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Рис.  3. Технологические операции (а–г) по аддитивному выращиванию методом ХГДН 
на примере цилиндрического образца.
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Метод термодинамического моделирования осуществлялся с помощью про-
граммного комплекса HSC Chemistry 10 (разработан в  компании Outokumpu 
Research Oy), в частности был вычислен равновесный фазовый состав различных 
смесей металлов, карбидов и силицидов в интервале температур от 100 до 4000 °С 
при давлении 0.1 МПа в защитной среде.

Исследование образцов с помощью термического анализа проводилось на уста-
новке совмещенного термогравиметрического анализа и дифференциально-скани-
рующей калориметрии TGA/DSC1/1600 HF (Mettler Toledo). Эксперимент заклю-
чался в нагреве и последующем охлаждении образцов. Скорость нагрева и охлаж-
дения составляла 20 °C/мин. Испытания проводились в среде гелия.

Контроль, дефектоскопию и исследование внутренней области деталей про-
водили с помощью компьютерной томографии на высокопропускной системе 
КТ Phoenix V|tome|x C450 производства компании General Electric.

Лакунарность или однородность распределения частиц в структуре материала, 
пористость и размерность пор рассчитывалась программной обработкой изображе-
ний в электронной микроскопии по методике [30].

Скорость нагрева для представленных режимов термообработки составляла 
300 °C/мин, выдержка 15 мин, охлаждение с печью.

Экспериментальные исследования выполнены на оборудовании Центра кол-
лективного пользования научным оборудованием “Состав, структура и свойства 
конструкционных и функциональных материалов” НИЦ “Курчатовский инсти-
тут” – ЦНИИ КМ “Прометей”.

3. РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ

Применение метода ХГДН в данной работе обеспечивает послойное формиро-
вание на поверхности сплавной подложки объемного композиционного материала 
заданной геометрии на основе двух металлических компонентов (Ti, Al) и керами-
ческой тугоплавкой составляющей (B4C), что можно рассматривать, как частный 
случай аддитивной технологии при автоматизированном подводе газового потока.

Особенность построения композиционного материала заключается в формиро-
вании пластичной матрицы, армированной керамическими частицами. К настоя-
щему времени известен ряд работ авторов [29, 31–35] по исследованию технологи-
ческих аспектов создания пластичных поверхностных слоев (покрытий) на основе 
никелевых и алюминиевых монопорошков. Практически установлено, что природа 
закрепления керамических частиц заключается в их внедрении в более пластичный 
материал и дальнейшем удерживании в пластичной оболочке за счет налипания 
потока частиц металла или сплава.

В настоящей работе объемные образцы тройной системы Ti-Al-B4C после ре-
ализации ХГДН будут подвергаться термообработке, что будет приводить к суще-
ственному изменению фазового состава и получению фактически нового материа-
ла, в том числе из расплавленного состояния.

Введение титанового компонента обосновано нами в связи с его высокотемпе-
ратурной химической активностью [36, 37]. Титановый порошок является доступ-
ным и экономичным, однако имеет низкую вязкость при реализации метода “хо-
лодного” напыления, поэтому совместное присутствие пластичной алюминиевой 
связки является в том числе технологической необходимостью в рамках построения 
аддитивного материала.
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В данной работе аддитивная технология реализована с использованием компью-
терной программы управления дозаторами. Изготовление объемных образцов про-
изводится из раздельно работающих дозаторов, согласно представленной схеме на 
рис. 4, что выгодно обеспечивает технологичность процесса.

В табл. 1 представлено соотношение массового расхода порошков при напыле-
нии, в условиях реализации их раздельной подачи в газовый поток, что впослед-
ствии приводит к формированию трех составов материалов, с увеличением содер-
жания керамического компонента, при близких относительных соотношениях ме-
таллических составляющих.

Результаты энергодисперсионного анализа структуры выращенных аддитивных 
материалов Ti-Al-B4C в произвольной области поверхности представлены в табл. 2, 
типовую структуру можно наблюдать на рис. 5.

Покрытие

Подложка

Дозаторы

1 2 3

Транпортирующий
газ

Трехфазный
поток

Рис. 4. Схема раздельно работающих дозаторов.

Таблица 1. Расход порошков и их фактическое массовое соотношение в напыляемой смеси

Маркировка 
образцов

Расход исходных порошков, 
г/мин

Эквивалентное соотношение 
порошков, мас. %

Ti Al B4C Ti Al B4C
1

22 5
5 69 16 16

2 7 65 15 21
3 11 58 13 29

Ti Kα1

100 µm 100 µm

B Kα1, 2 AI Kα1

100 µm100 µm

Рис. 5. Результаты энергодисперсионного анализа, распределение участка структуры материала 
на примере состава 3 по элементам.
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Таблица 2. Химический состав аддитивных материалов в результате напыления

Маркировка 
образцов

Содержание компонентов в материале, мас. %
Определение

по элементу – Ti
Определение

по элементу – Ti
Определение 

по элементу – B
Ti Al B4C

1 68 10 15
2 60 8 20
3 55 8 25

Элементный количественный анализ является условным для идентификации 
фаз, так как метод плохо восприимчив к углероду, весьма чувствителен к кис-
лороду, азоту и прочим примесям, присутствующим на поверхности шлифа или 
в эпоксидной смоле. Однако полученные соотношения компонентов коррелиру-
ют с определенными ранее данными в табл. 1. Фактически карбид бора определен 
нами по борной составляющей. Частицы карбида бора достаточно эффективно за-
крепляются в покрытии. Можно предполагать, что в потоке транспортирующего 
газа частицы карбида бора получают, с одной стороны, достаточную кинетическую 
энергию для внедрения в пластичную матрицу, но, с другой стороны, это не приво-
дит к возникновению абразивного воздействия.

Величина параметра лакунарности для снимка структуры с борной составляю-
щей при размере стороны ячейки в 100 мкм составила Λ = 0.3, что соответствует 
достаточно однородному объемному распределению карбида бора. Для более на-
глядного сравнения, в работах [30, 38, 39] приводятся структуры с неоднородным 
или характерным “островковым” распределением частиц (на примере распределе-
ния титаната бария в полимерной матрице), значение параметра лакунарности для 
таких структур составляет порядка Λ = 0.9. Пористость выращенных ХГДН‑мате-
риалов не превышала 3% об.

В  следующей части работы рассмотрим фазовую эволюцию объемных 
ХГДН‑материалов при тепловом воздействии. Исходя из представленных данных 
из справочника [40] известно, что в диапазоне температур 600–1500 K алюминию 
предпочтительнее реагировать с бором, чем с углеродом. Энергия Гиббса для дан-
ных реакций во всем температурном интервале повышается. Между тем дисперс-
ность исходных компонентов и их предварительная механоактивация (получение 
объемного материала из механической смеси монопорошков) за счет отсутствия 
сферичности и ударного взаимодействия с твердой подложкой, безусловно, может 
оказывать положительное влияние на химическое взаимодействие алюминия как 
с бором, так и с углеродом (с образованием Al4C3, имеющего химическую устойчи-
вость вплоть до 1400 K). Это предположение хорошо соотносится с результатами 
ранее проведенной работы [41], где экспериментально было определено образова-
ние Al4C3 при пропускании электрического тока (МДО) на поверхности покрытия 
Al-SiC (восстановление керамического компонента до металлического кремния), 
сформированного методом ХГДН из механической смеси порошков.

Титановый компонент при введении в двухкомпонентную систему Al-B4C ак-
тивно взаимодействует как с металлом, так и с керамическим соединением. Вначале 
титан взаимодействует с карбидом бора и полностью его разлагает с образованием 
карбида и борида титана и только после этого титан взаимодействует с алюминием. 
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Такой вывод можно сделать, исходя из данных по расчетам энергии Гиббса, пред-
ставленным на графике, рис. 6.

Из рис. 6 видно, что титану, как и алюминию, в условиях высокотемпературного 
воздействия термодинамически наиболее выгодно взаимодействовать с бором (по-
тенциально с боридными соединениями), чем с углеродом. Представленная кривая 
(по реакции 3) лежит в наиболее низкой, благоприятной области отрицательных 
значений энергии Гиббса. Данный факт говорит о том, что потенциальное введение 
в ХГДН‑систему борных компонентов может существенным образом повлиять на 
процессы фазообразования как при поверхностной (искровой, лазерной), так и при 
объемной (печной) обработке. Однако, в отличие от алюминия, титан имеет до-
статочно высокий потенциал для активного взаимодействия с углеродом. Следует 
отметить, что химическая активность титана к бору и углероду (реакция 2, 3) гораз-
до выше, чем активность образования непосредственно карбида бора (реакция 1).

Для оценки эволюции фазового состава объемного материала трехкомпонент-
ной системы Ti-Al-B4С, полученного “холодным” напылением из смеси монопо-
рошков в условиях высокотемпературной обработки, рационально сопоставить 
данные ДСК анализа с результатами рентгенофазового анализа поверхности по-
перечного сечения объекта (или сечения по направлению сопла). Рассмотрим ре-
зультаты практического эксперимента на примере материала в соотношении ком-
понентов по составу 1 (минимальное содержание B4C) в процессе двух циклов на-
грева до 1000  °С в среде гелия (выдержка 15 мин), с последующим охлаждением. 
Характерную ДСК‑кривую можно наблюдать непосредственно на рис. 7а.

На начальном участке ДСК‑кривой в интервале температур от 400 до 600 °C 
наблюдается небольшое колебание теплового потока. При температуре порядка 
630–650 °C алюминий начинает плавится, в результате чего расплав может актив-
но взаимодействовать с титаном, с образованием интерметаллидных соединений 
системы Ti-Al (перегиб кривой при 815 °C). Мы предполагаем, что основное фазо-
вое превращение может быть связано с образованием TiAl3.

Около температуры 1000 °C на кривой также присутствует небольшое колебание 
теплового потока. В этой области, вероятно, происходит запуск начальной стадии 
реакций образования основополагающей фазы TiB2, а также тугоплавких соедине-
ний в системе Ti-Al-C с преобладанием фазы TiC.
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Рис. 6. Значения энергии Гиббса для реакций: 4B + C → B4C (1), Ti + C → TiC (2), Ti + 2B → TiB2 (3).
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На ДСК‑кривой при последующем охлаждении присутствует колебание тепло-
вого потока в интервале температур 800–1000 °C и каких-либо существенных изме-
нений материале не происходит.

При повторном эксперименте, рис. 7б, на кривой присутствуют небольшие ко-
лебания теплового потока при температуре 400–600 и 850–1000 °C. При охлажде-
нии образца также наблюдается несущественное изменение потока, но уже вблизи 
температур 800–900 °C, что может говорить об отсутствии достижения термодина-
мической устойчивости системы.

Анализ фазового состава как после первого, так и  после второго цикла 
нагрев/охлаждение, рис. 8, показывает наличие в объемном материале тугоплавких 
соединений на основе карбидов и боридов металлов, что соотносится с рассужде-
ниями по ДСК‑анализу.

Анализ результатов исследования показал наличие следующих фаз: TiB2, TiC, 
Ti3AlC, TiB (в следах). Весьма интересным является факт отсутствия интерметал-
лидных фаз в термообработанном материале. Ранее в работах [36, 37] было показа-
но, что тепловая лазерная обработка композиционных ХГДН‑покрытий в системе 
Ti-Al-Ni активизирует процессы объемного формирования широкого спектра вы-
сокотемпературных интерметаллидов с участием титановой матрицы. В нашем экс-
перименте является очевидным вклад введения керамического компонента и его 
активного взаимодействия с титаном, что привело фактически к созданию компо-
зиционной керамики с образованием max-фазы типа Ti3AlC.

Таким образом, обнаруженные фазы позволяют говорить о создании более 
тугоплавкой и  прочной матрицы выращенного композиционного материала, 
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Рис. 8. Фазовый состав термообработанного материала на примере состава 1 с минимальным 
содержанием карбида бора.
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а металлические компоненты, в свою очередь, формируют прекурсорное соеди-
нение (прототип) для создания пластичной аддитивной модели “холодным” на-
пылением, при этом химический состав прототипа под термообработку на уров-
не отдельных слоев (объемных зон) может быть задан по определенному закону за 
счет применения системы раздельно работающих дозаторов, что открывает новые 
перспективы к синтезу функционально-градиентных материалов. Такая техноло-
гия может быть перспективной для создания переходных зон между разнородными 
материалами, например между сплавными и керамическими элементами в сочле-
ненной конструкции.

Обратимся к результатам термодинамического моделирования по расчетному 
прогнозированию фазообразования в изучаемых ХГДН‑материалах (составы 1–3). 
На рис. 9 изображены кривые, соответствующие изменению содержания компо-
нентов, которым термодинамически выгодно образовываться и устойчиво суще-
ствовать в результате предварительной реализации полного химического взаимо-
действия в системе Ti-Al-B4C до достижения равновесного состояния. Расчет по-
казывает, что при тепловом воздействии, с учетом осуществленных реакционных 
равновесных превращений, в материалах присутствует основополагающая прочная 
фаза диборида титана, составляющая долю 60–80% мас., табл. 3, информация пред-
ставлена с начальных отрезков кривых.

Расчетные данные эволюции равновесного состояния системы приводятся до 
температуры 4000 °C, что может быть достижимо, например для условий лазер-
ного излучения. Также следует учитывать тот факт, что реальная формируемая 
ХГДН‑система из множества задаваемых компонентов не может являться равно-
весной, вследствие отсутствия периодичности (повторяемости, равномерности) 
структуры и вероятного перераспределения тепловых потоков в объеме материа-
ла при нагреве. Следовательно, термодинамическое моделирование помогает нам 
определить равновесное соотношение фаз вновь образуемой фазовой системы в ма-
териале, но не объясняет, какие практические условия должны быть соблюдены для 
активации данных химических процессов.

Результаты расчетов, сопоставленные с практическими данными, показывают, 
что карбид бора полностью расходуется в объеме всех изучаемых материалов на об-
разование тугоплавкой боридной и карбидной матрицы. С увеличением содержания 
карбида бора при термообработке существенным образом растет содержание дибо-
рида титана. Мы оцениваем наличие данной фазы, как главный критерий упрочне-
ния формируемого объемного материала. Известно, что диборид титана обладает 
стойкостью к окислению в условиях высоких температур в окислительных средах, 
за счет образования поверхностной защитной пленки на основе B2O3 [42]. Также 
с ростом содержания карбида бора прослеживается тенденция к уменьшению ре-
акционной способности титана к углероду, в результате чего ХГДН‑материал на-
сыщается борными соединениями, а содержание карбида титана стремится к нулю. 

Таблица 3. Равновесное содержание компонентов с учетом осуществления фазовых превра-
щений в системе Ti-Al-B4C

Состав, №  Содержание, % мас. – компонент
1 60 – TiB2 30 – TiC 7 – Al4C3 1 – TiAl3 2 – AlB2

2 62 – TiB2 25 – TiC 11 – AlB2 2 – Al –
3 80 – TiB2 10 – TiB 7 – AlB2 3 – TiC –
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Наличие max-фазы в представленных равновесных условиях существования систе-
мы является термодинамически невыгодным. Следует отметить, что при повыше-
нии температуры в диапазоне 1600–2000 °C для материалов всех составов характерен 
процесс распада TiB2 на TiB с образованием и ростом содержания свободного бора.

В результате термообработки наблюдалось незначительное изменение линейных 
размеров образцов составов 1–3. Мы связываем данный факт с процессом образо-
вания промежуточного интерметаллида системы Ti-Al из расплава, что было объ-
яснено ранее в работе [36]. В дальнейшем усадку следует учитывать, как индиви-
дуальный параметр, при создании образцов или изделий заданной геометрической 
формы. Введение до 10 мас. % алюминия в состав материала обеспечивает доста-
точные условия для реализации метода ХГДН при создании объемного объекта.

Методом компьютерной томографии было выполнено исследование внутренней 
области термообработанного материала, рис. 10.

На рис. 10 можно наблюдать засветленные участки ближе к оси цилиндрическо-
го образца, что можно связать с образованием зон термического влияния, в кото-
рых процессы фазообразования не были завершены до конца, как уже было отме-
чено ранее при проведении ДСК‑анализа. В то же время томография показывает 
наличие сплощности структуры в объеме и низкую пористость материала, не более 
3% об. Следует отметить отсутствие трещин и расслоений в материале, связанных 
с термическим воздействием, вследствие наличия существенной разницы по КЛТР 
среди напыляемых металлических и керамических компонентов.

Возможности создания тугоплавкой матрицы в будущем могут позволить техно-
логии ХГДН составить конкуренцию “классическим” технологиям прессованной 
или литой керамики, в том числе и при изготовлении сложнопрофильных изде-
лий [43–49].

Рис. 10. Томография термообработанного материала на примере состава 3 (среда гелий, 1000 °C, 
выдержка 15 мин, охлаждение с печью).
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ЗАКЛЮЧЕНИЕ

Рассмотрены и обоснованы аспекты построения объемного материала на ке-
рамической матрице из диборида титана, как частный случай аддитивной техно-
логии послойного выращивания, за счет преимуществ комплексного применения 
метода “холодного” газодинамического напыления смеси монопорошков в системе 
раздельно работающих дозаторов с последующей термообработкой. Практически 
показано, что применение комплексного подхода позволяет адаптировать техноло-
гию “холодного” напыления к созданию композиционных керамических изделий, 
а также открывает новые возможности задания и регулирования фазового состава 
материала от содержания напыляемых частиц.

Практически и теоретически показано, что металлические пластичные частицы 
в составе заготовки-прототипа, сформированной методом “холодного” газодина-
мического напыления, могут выступать прекурсорным компонентом для образова-
ния высокотемпературных боридов и карбидов титана, что после тепловой обработ-
ки приводит к упрочнению объемного композиционного материала при отсутствии 
значительной усадки, сохранении низкой пористости и сплошности структуры.

Работа выполнена при финансовой поддержке гранта РНФ (Соглашение 
№ 21-73-30019). Экспериментальные исследования выполнены на оборудовании 
Центра коллективного пользования научным оборудованием “Состав, структура 
и свойства конструкционных и функциональных материалов” НИЦ “Курчатов-
ский институт” – ЦНИИ КМ “Прометей”.
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