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Установлено, что оксидное ZnO-Al2O3 покрытие, сформированное на по-
верхности алюмосиликатных волокон, содержит гексагональные кристаллы 
ZnO, имеющие размер 13 нм. Полученные композиты продемонстрировали 
интенсивную генерацию синглетного кислорода под действием УФ излуче-
ния. Увеличение плотности мощности излучения обеспечивало существенное 
увеличение (+60%) интенсивности генерации синглетного кислорода. Уста-
новлено, что нанесение оксидного покрытия существенно ускоряет процес-
сы адсорбции органического красителя Анилиновый Голубой из водных рас-
творов на поверхности волокон и его фотокаталитического разложения под 
действием излучения ближнего УФ диапазона. Кинетика процесса адсорбции 
красителя хорошо описывается кинетическим уравнением псевдовторого по-
рядка. Нанесение оксидного покрытия на поверхность волокон значительно 
ускоряет процессы фотокатализа красителя в растворе. Скорость фотокатали-
тического разложения красителя в растворе описывается кинетическим урав-
нением псевдовторого порядка.
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ВВЕДЕНИЕ

В настоящее время во всем мире большое внимание уделяется разработке новых 
фотокаталитических процессов и материалов [1–5]. Одним из распространенных 
практических применений фотокатализа является очистка воздуха и водных сред 
от токсичных органических соединений и болезнетворных микроорганизмов [5–7].

Процессы адсорбции органических соединений на поверхности материалов 
играют важную роль в их фотокаталитическом разложении [8–10]. Увеличение 
удельной поверхности и адсорбционных свойств материалов приводит к усилению 
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их фотокаталитической активности [11–13]. Морфология материалов оказывает 
сильное влияние на их фотокаталитические свойства [6, 8, 11, 13].

Известно [1, 12, 14], что процессы генерации химически активных форм кисло-
рода (АФК) играют важную роль в фотокаталитической и антибактериальной ак-
тивности оксидных материалов. Механизм фотокаталитического действия материа-
лов включает генерацию их поверхностью активных форм кислорода, окисляющих 
органические соединения. Генерация АФК происходит на поверхности фотоката-
лизаторов и материалы, обладающие высокой удельной поверхностью (пористые 
матрицы [11, 12], волокна и капилляры [4, 13–16], наностержни [17]), активно вза-
имодействуют с окружающей средой и проявляют высокую фотокаталитическую 
и антибактериальную активность.

Эффективность применения минеральной ваты в качестве основы для фото-
каталитических материалов, содержащих наночастицы оксидов металлов (Pd, Cu, 
Co, Au, Ru), была показана в [18]. Результаты разработки высокоэффективных ком-
позиционных фотокатализаторов на основе частиц оксида висмута, осажденных 
на стекловату, описаны в [19, 20]. Также высокие фотокаталитические свойства 
демонстрируют композиты, содержащие различные полупроводниковые оксиды 
(TiO2, CuO, SnO2 /TiO2) и стеклянные волокна [4, 13, 14, 21].

Известно, что одними из наиболее эффективных оксидных фотокатализаторов 
являются композиты на основе оксида цинка [6, 7, 9, 12]. Ранее было показано, что 
материалы системы ZnO-Al2O3 обладают cпособностью к интенсивной фотогенера-
ции химически активного синглетного кислорода [22, 23] и фотокаталитическими 
свойствами [24, 25].

Целью настоящей работы являлись синтез волокнистого композиционного ма-
териала на основе алюмосиликатной ваты, модифицированного наночастицами 
системы ZnO-Al2O3, изучение его способности к фотогенерации химически актив-
ного синглетного кислорода и исследование адсорбционных и фотокаталитических 
свойств.

МАТЕРИАЛЫ И МЕТОДЫ

В настоящей работе в качестве высокодисперной матрицы была использована 
промышленно выпускаемая алюмосиликатная вата. Для ее модификации был из-
готовлен раствор, содержащий нитраты цинка и алюминия, а также растворимый 
органический полимер поливинилпирролидон. Образцы исходной стекловаты, 
волокнистого композита с нанесенным полимерно-солевым покрытием и поли-
мерные гели, полученные сушкой раствора и содержащие нитраты цинка и алю-
миния, подвергались термообработке при температуре 550 °C в течение 2 ч. Такой 
температурно-временной режим термообработки обеспечивает полное разложение 
полимера и солей металлов, удаление газообразных продуктов и формирование ок-
сидных покрытий [22, 25].

Структура, морфология и химический состав полученных композиционных ма-
териалов были исследованы методами рентгенофазового, электронно-микроскопи-
ческого и энергодисперсионного анализов. Процессы фотогенерации синглетного 
кислорода были изучены методом люминесцентной спектроскопии в соответствии 
с методикой, описанной в [26]. В работе была исследована также зависимость ин-
тенсивности генерации синглетного кислорода от плотности мощности УФ излу-
чения (λ = 370 нм).
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Кристаллическая структура образцов была исследована рентгенофазовым ме-
тодом на дифрактометре Rigaku Ultima IV (Rigaku Corporation). На основании дан-
ных рентгенофазового анализа проводились расчеты среднего размера частиц d по 
формуле Шеррера:

	 d
K= λ

β θcos
,	 (1)

где К – коэффициент формы (для сферических частиц К = 0.9); λ – длина волны 
рентгеновского излучения для линии CuKα (λ = 0.15406 nm); β – FWHM (ширина 
пика на дифрактограмме на половине его максимума). Для расчетов нами исполь-
зовались пики максимальной интенсивности.

Для исследования морфологии полученного материала был применен метод 
сканирующей электронной микроскопии. Для проведения исследований исполь-
зовался электронный микроскоп TescanVega 3 SBH с приставкой для энергодис-
персионного анализа EssenceTM. В табл. 1 приведены аналитические элементные 
составы волокнистого композита и оксидного порошка по данным энергодиспер-
сионного анализа.

Адсорбционные и фотокаталитические свойства исследуемых материалов оце-
нивалась по скорости обесцвечивания водного раствора органического красителя 
Анилиновый Голубой в водных растворах. Массы навесок исследуемых образцов 
материалов составляли по 0.7 г для термообработанной стекловаты и волокнисто-
го композита и 0.5 г для синтезированного в работе оксидного порошка системы 
ZnO-Al2O3. Масса оксидных частиц системы ZnO-Al2O3 в навеске композита со-
ставляла 0.13 г. Навески образцов помещались в емкость с 200 мл раствора краси-
теля (0.02 М). При выполнении экспериментов 6 мл водного раствора красителя 
помещались в кварцевые кюветы, и осуществлялись периодические измерения 
спектров поглощения растворов красителя. Спектр поглощения водного раствора 
красителя (0.02 М) приведен на рис. 1. Концентрация раствора красителя опре-
делялась по поглощению света на длине волны 611 нм. В процессе исследований 
фотокаталитической активности материалов кюветы подвергались воздействию 
излучения светодиодной матрицы (IP‑20; λmax = 395 нм; 20 W).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ
На рис. 1 приведены дифрактограммы стекловаты (а) и композита (б), термо

обработанных при температуре 550 °C в течение 2 ч. При таком режиме термо-
обработки материал стекловаты сохраняется в аморфном состоянии (рис. 1а). 

Таблица 1. Аналитический элементный состав волокнистого композита по данным энерго-
дисперсионного анализа

Материал
Компоненты, ат. %

Si Al Ca Ti K Fe Zn
Волокнистый 
композит

Содержание 45.84 40.71 0.28 0.44 0.27 0.49 11.96
Среднеквадратичное 
отклонение

2.83 0.22 0.03 0.05 0.01 0.10 3.22

Оксидный 
порошок

Содержание – 9.41 – – – – 90.59
Среднеквадратичное 
отклонение

– 0.42 – – – – 0.42



	 ФОТОКАТАЛИТИЧЕСКИЙ КОМПОЗИТ...� 109

На дифрактограмме композита хорошо видны пики гексагональных кристаллов 
оксида пика и небольшой пик кристобалита. Наблюдаемое проявление процессов 
кристаллизации стеклянных волокон можно быть связано как с формированием на 
их поверхности оксидных наночастиц. Также это может быть результатом экзотер-
мических процессов с участием нитратов металлов и ПВП, протекающих при тер-
мообработке материалов в процессе полимерно-солевого синтеза наночастиц [27].

Отсутствие пиков каких-либо кристаллических оксидных соединений алюми-
ния в образцах может объясняться его относительно малой концентрацией в на-
ночастицах. Кроме того, в [28] на основании данных рентгенофазового анализа 
было высказано предположение о возможности частичного внедрения ионов Al3+ 
в решетку кристаллов оксида цинка.

Наблюдаемое в настоящей работе некоторое уменьшение размеров кристаллов 
ZnO можно объяснить особенностью морфологии композита. На стадии сушки 
образцов стекловаты, насыщенных пропитывающим раствором, на поверхности 
многочисленных волокон происходит формирование тонких полимерно-солевых 
слоев. Высокая удельная поверхность волокнистого материала определяет про-
странственное разделение кристаллитов, формирующихся на поверхности воло-
кон при термообработке, что препятствует их агрегации и определяет наблюдаемое 
уменьшение их размеров.

На рис. 2а, б приведены электронно-микроскопические снимки композицион-
ного материала на основе алюмосиликатной стекловаты, на поверхность которой 
полимерно-солевым методом были нанесены фотокаталитические покрытия систе-
мы ZnO-Al2O3. Аналогичная морфология композиционного материала на основе 
стекловаты, модифицированной наночастицами оксида кобальта, наблюдалась ра-
нее в [18]. Наблюдаемая структура материала обеспечивает доступность поверхно-
сти модифицированных волокон для молекул органического красителя и высокую 
скорость диффузии растворов внутри композиционного материала.

Данные электронно-микроскопического анализа свидетельствуют о том, что по-
лученный нами оксидный порошок состоит из пористых частиц микронного раз-
мера (рис. 2в). Снимок, сделанный при большем увеличении, показал, что в этом 
материале наблюдается довольно большой разброс пор по размеру – от нескольких 
сотен нанометров до нескольких микронов. Наличие многочисленных пор в мате-
риале объясняется обильным газовыделением при термическом разложении солей 
металлов и поливинилпирролидона. Аналогичная морфология порошков, получен-
ных полимерно-солевым методом, наблюдалась ранее в [7, 12, 25].
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Рис. 1. Рентгенограммы стекловаты, прокаленной при 550 °С в течение 2 ч (а), композита, 
полученного при термообработке при температуре 550 °С в течение 2 ч (б) и порошка системы 
ZnO-Al2O3 (в).
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Многочисленные поры различных размеров наблюдаются в частицах оксидно-
го порошка ZnO-Al2O3. Наличие пористой структуры частиц связано с обильным 
газовыделением при термическом разложении нитратов металлов и ПВП. Ранее 
формирование схожей пористой структуры наблюдалось в [12] в оксидных порош-
ках различного химического состава, полученных полимерно-солевым методом. 
Известно [11, 28], что пористые полупроводниковые материалы характеризуются 
высокой удельной поверхностью и обладают высокими адсорбционными и фото-
каталитическими свойствами.

На рис. 3а приведен спектр фотолюминесценции полученного нами волок-
нистого композита. Известно  [26], что химически активный синглетный кис-
лород (1О2) имеет характеристическую полосу фотолюминесценции в ближней 
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Рис. 2. Электронно-микроскопические снимки композиционного материала (а,  б) 
и оксидного порошка системы ZnO-Al2O3 (в, г) при различных увеличениях.
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ИК области спектра (λ = 1270 нм). Эта полоса связана с электронным переходом 
1Δg → 3∑g– [26] и часто наблюдается в спектрах люминесценции различных фотока-
талитических материалов [7, 12, 23]. Приведенный на рис. 4а спектр демонстрирует 
полосу люминесценции синглетного кислорода, что свидетельствует о способно-
сти композита к его фотогенерации. Наблюдаемая интенсивность фосфоресценции 
синглетного кислорода довольно велика.

На рис. 4б представлена зависимость интенсивности полосы люминесценции 
синглетного кислорода I от плотности мощности E возбуждающего композит из-
лучения. Видно, что экспериментальные данные удовлетворительно описываются 
линейной зависимостью
	 I = kE + b.	 (2)

Ранее подобная линейная зависимость наблюдалась при процессах фотогене-
рации 1О2 порошкообразными нанокомпозитами на основе ZnO [27]. Из рис. 3а 
видно, что наблюдается схожесть зависимостей I = f (E), полученных для фотоге-
нерации синглетного кислорода оксидным порошком и волокнистым композитом.

На рис. 4 представлены кинетические зависимости адсорбции красителя АГ на 
поверхности материалов. Процесс адсорбции красителя на поверхности стекловаты 
(кривая 1) протекает медленно. Это свидетельствуют о довольно низкой способно-
сти волокон стекловаты, не модифицированных наночастицами оксидов, к адсорб
ции красителя из раствора.

Данные, приведенные на рис. 4, показывают высокую скорость адсорбция кра-
сителя АГ на поверхности оксидного порошка ZnO-Al2O3 (кривая 2) и волокнисто-
го композита (кривая 3). На начальной стадии адсорбция красителя на поверхности 
оксидного порошка протекает быстро и уже через 5 мин в растворе сохраняется ме-
нее 40% молекул АГ, а затем скорость процесса значительно снижается (рис. 3, кри-
вая 3). Аналогичная кинетическая зависимость адсорбции органического красителя 
Chicago Sky Blue (Sigma Aldrich) на поверхности пористых частиц ZnO наблюдалась 
ранее в [12]. В [10] схожие результаты наблюдались при адсорбции ацетальдегида 
на поверхности наночастиц TiO2, модифицированных азотом.
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Видно также, что процессы адсорбции на поверхности волокнистого композита 
протекают значительно быстрее, чем на поверхности стекловаты. Заметно более 
высокая скорость адсорбции на поверхности композита может быть связана с на-
личием на поверхности волокон оксидных наночастиц, увеличивающих удельную 
поверхность материала. Кроме того, присутствие в составе этих наночастиц ионов 
Zn2+, способных активно взаимодействовать с электронами молекул красителя, 
также может приводить к увеличению скорости адсорбции, как это было описано 
ранее в [29].

При сравнении кинетики адсорбции на поверхности волокон стекловаты 
(рис. 4, кривые 1 и 3) можно сделать вывод о том, что их модификация оксидными 
наночастицами существенно увеличивает скорость адсорбции молекул красителя 
(кривая 3).

Для описания кинетики адсорбции на поверхности фотокаталитических мате-
риалов часто используется модель Лагергрена [43] уравнение псевдопервого поряд-
ка [14, 16, 44]:

	
dq
dt

k q qt
e t= −( )1 ,	 (3)

где qt (мг/г) – количество красителя, адсорбированного 1 г сорбента к моменту вре-
мени t; qe – равновесная адсорбционная емкость сорбента; k1 (мин–1) – константа 
скорости адсорбции; t – продолжительность процесса адсорбции (мин).

На рис. 5а представлены зависимости ln(qe – qt) = f (t), построенные на осно-
вании экспериментальных данных по адсорбции красителя. Приведенные данные 
показывают, что уравнение (3) удовлетворительно (R2 > 0.9) описывает кинетику 
адсорбции красителя АС на поверхности алюмосиликатной ваты и волокнистого 
композита. Однако, для кинетики адсорбции на поверхности оксидного порошка 
отклонение экспериментальных данных от линейной зависимости ln(qe – qt) = f (t) 
велико (R2 < 0.9).
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Рис. 4. Кинетические зависимости адсорбции красителя из водного на поверхности 
термообработанных стекловаты (кривая 1), оксидного нанопорошка системы ZnO-Al2O3 
(кривая 2) и волокнистого композита (кривая 3).
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Обзоры многочисленных экспериментальных данных, приведенные в [8, 30, 31], 
свидетельствуют о том, что модель псевдо-второго порядка применяется чаще 
и описывает точнее кинетику адсорбции на поверхности различных материалов. 
В интегрированной форме кинетическое уравнение псевдо-второго порядка может 
быть записано в виде [8, 9, 32]:

	 t
q k q

t
qt e e

= +1

2
2

,	 (3)

где k2 – константа скорости адсорбции второго порядка, qe – максимальная равно-
весная адсорбционная емкость фотокатализатора (mg/g), qt – содержание адсор
бированного красителя на поверхности фотокатализатора при времени t (mg/g). 
На рис. 5б приведены зависимости t/qt = f(t) для адсорбции красителя на поверх-
ности материалов. Из рисунка видно, что кинетика адсорбции красителя на по-
верхности всех исследованных в работе материалов хорошо (R2 > 0.9) описывает-
ся уравнением (3). Сопоставление данных рис. 5а и 5б, показывает, что уравнение 
псевдовторого порядка (3) значительно лучше (R2 существенно больше) описывает 
кинетику адсорбции красителя, чем уравнение (2). Высокие коэффициенты де-
терминации приведенных на рис. 5б зависимостей позволяют, на основании дан-
ных [32], сделать вывод о большой термодинамической выгоде взаимодействий 
красителя АГ с исследуемыми материалами.

На рис. 6 приведены кинетические зависимости фотолиза красителя в растворе 
и фотокаталитического разложения в присутствии термообработанной стекловаты, 
волокнистого композита и оксидного порошка. Из приведенных данных (рис. 6, 
кривые 1 и 2) видно, что стекловата практически не обладает фотокаталитическими 
свойствами и обесцвечивание раствора красителя практически полностью опреде-
ляется фоторазложением его молекул под действием излучения.

Нанесение оксидного покрытия на волокна алюмосиликатной ваты значи-
тельно увеличивают фотокаталитическую активность материала (кривая 2, рис. 6). 
Удаление из раствора более 50% молекул красителя наблюдается уже через 15 мин 
облучения в присутствии этого материала. Сопоставление кривых 1 и 2 (рис. 6) ил-
люстрирует сильное влияние наноразмерного ZnO-Al2O3 покрытия на фотокатали-
тическую активность материала.
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Высокая скорость обесцвечивания раствора красителя наблюдается при его 
фотокаталитической обработке в  присутствии ZnO-Al2O3 порошка (кривая 3, 
рис. 6). Однако, необходимо отметить, что масса фотокаталитического материала 
(ZnO-Al2O3) в этом эксперименте была 0.50 г. В аналогичном эксперименте с во-
локнистым композитом масса оксидного ZnO-Al2O3 модификатора в составе мате-
риала составляла только 0.13 г.

Для описания кинетики фотокаталитического разложения красителей в раство-
рах наиболее часто используется уравнение псевдо-первого порядка, которое может 
быть представлено в виде [9, 29]

	 ln(C/C0) = k1 f t,	 (4)
где t – время, мин, k1 f  – константа скорости псевдопервого порядка, мин–1.

Зависимости –ln(C/C0) = f(t), рассчитанные нами на основании эксперимен-
тальных данных, представлены на рис. 7а. Значение k1 f, полученное для кинетики 
фотокатализа при применении волокнистого композита, довольно велико и состав-
ляет 0.039 мин–1. Для сравнения в табл. 2 представлены величины k1 f, приведенные 
для фотокаталитического разложения в растворах органических красителей, схожих 
по структуре с Анилиновым Голубым, в присутствии различных порошкообразных 
фотокаталитических материалов, синтезированных полимерно-солевым методом 
в условиях, идентичных использованным в настоящей работе. Следует отметить, 
что длины волн и плотности мощности возбуждающего излучения, использован-
ного в [7] и в настоящей работе близки.

Расчеты, проведенные на основе данных по фотокаталитическому разложению 
красителя в присутствии нанопорошка системы ZnO-Al2O3, показали, что экспе-
риментальные результаты не соответствуют (R2 = 0.15) кинетической зависимости, 
описываемой уравнением (4). Это явление может быть связано с быстрой и ин-
тенсивной адсорбцией молекул красителя на поверхности порошка, что приводит 
к экранированию ими его поверхности и наблюдаемому (кривая 4, рис. 6) быстрому 
снижению скорости фотокатализа. Аналогичное явление наблюдалось ранее в [9] 
при фотокаталитическом разложении диазокрасителя Chicago Sky Blue на поверх-
ности порошка системы ZnO-MgO.
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Рис. 6. Кинетические зависимости фотолиза красителя в  растворе (кривая 1)  и фото
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волокнистого композита (кривая 3) и порошка системы ZnO-Al2O3 (кривая 4).
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Кинетическое уравнение псевдовторого порядка, также используемое для опи-
сания процессов разложения красителей в растворах, может быть представлено 
в виде [9, 33–36]

	 1 1
0

2c c
k t= + ,	 (5)

Таблица 2. Константы скорости фотокаталитического разложения k1 f  красителей под дей-
ствием излучения ближнего УФ диапазона в присутствии различных фотокатализаторов

№ 
п/п

Материал  
фотокатализатора

Метод 
синтеза Краситель

Константа 
скорости 
фотоката

литического 
разложения 

k1 f, мин–1

Длина 
волны 

излуче-
ния, нм

Ссылка

1 Порошок  
ZnO-SnO2-Fe2O3

Термиче-
ское разло-
жение солей 
металлов

Chicago Sky Blue 
(Sigma Aldrich)

0.010 375 [7]

2 Порошок  
ZnO-SnO2-Fe2O3

Полимерно- 
солевой 
метод

Chicago Sky Blue 
(Sigma Aldrich)

0.013 375 [7]

3 Порошок  
ZnO-SnO2- 
Fe2O3-Ag

Полимерно- 
солевой 
метод

Chicago Sky Blue 
(Sigma Aldrich)

0.024 375 [7]

4 Алюмосиликатная 
вата

Термо-
обработка 
стекловаты

Анилиновый  
Голубой

0.039 395 Экспе-
римент

5 Покрытие  
ZnO-Al2O3  
на волокнах ваты

Полимерно-
солевой 
метод

Анилиновый 
Голубой

0.003 395 Экспе-
римент
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экспериментальных данных по фотокаталитическому разложению красителя Анилиновый 
Голубой в растворе.
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где k2 – константа скорости фотокаталитической реакции псевдо-второго порядка. 
Рассчитанные на основании экспериментальных данных зависимости 1/C = f (t) для 
процессов фотокаталитического разложения красителя АС в растворах в присут-
ствии исследованных материалов представлены на рис. 7б. Сопоставление данных, 
приведенных на рис. 7а и рис. 7б, показывает, что уравнение (5) заметно лучше 
описывает экспериментальные результаты, чем уравнение (4).

ЗАКЛЮЧЕНИЕ
В работе синтезирован фотокаталитический волокнистый композит на основе 

алюмосиликатной ваты и наночастиц системы ZnO-Al2O3. Формирование нано-
размерного оксидного покрытия на волокнах минеральной ваты осуществлялось 
жидкостным полимерно-солевым методом с использованием водного раствора, со-
держащего нитраты металлов и поливинилпирролидон.

Исследования химического состава, структуры и морфологии композита, вы-
полненные методами ренгенофазового и энегодисперсионного анализов и скани-
рующей электронной микроскопии показало, что покрытие, сформированное на 
поверхности волокон, состоит из оксидных кристаллов, размером не более 14 нм. 
Установлено, наблюдается уменьшение размеров кристаллов ZnO, сформиро-
ванных в волокнистом композите по сравнению с порошкообразным оксидном 
материалом.

Полученный волокнистый композит демонстрирует высокую скорость адсор-
бции из водных растворов органического красителя Анилиновый Голубой. Ско-
рость процесса адсорбции красителя хорошо описывается кинетической моделью 
псевдовторого порядка.

Волокнистый композит обладает способностью к фотогенерации химически ак-
тивного синглетного кислорода под действием излучения с длиной волны 375 нм. 
Используя люминесцентный метод анализа, установлено, что интенсивность гене-
рации синглетного кислорода линейно зависит от плотности мощности возбужда-
ющего излучения.

Эксперименты показали высокую фотокаталитическую активность композита 
по разложению красителя Анилиновый Голубой в водных растворах под действием 
излучения с длиной волны 395 нм. Скорость обесцвечивания раствора красителя 
велика и это особенно сильно проявляется на начальных стадиях процесса. Полу-
ченные экспериментальные результаты плохо описываются традиционно использу-
емой в фотокатализе кинетической моделью псевдо-первого порядка. Существенно 
лучшее соответствие полученным данным получено при применении кинетической 
модели псевдо-второго порядка.
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