ВЛИЯНИЕ СПОСОБА ВВЕДЕНИЯ ГРАФЕНА НА ФИЗИКО-МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ТЕРМОЭЛАСТОПЛАСТА

© 2023 г. М. В. Тимошенко^{1, *}, С. В. Балабанов¹, М. М. Сычев^{1, 2}

¹Институт химии силикатов им. И.В. Гребенщикова, РАН, наб. Макарова, 2, Санкт-Петербург, 199034 Россия

²Санкт-Петербургский государственный технологический институт (технический университет), Московский пр., 26, Санкт-Петербург, 190013 Россия

*e-mail: timoshe-mikhail@mail.ru

Поступила в редакцию 24.04.2023 г. После доработки 25.05.2023 г. Принята к публикации 08.06.2023 г.

В данной работе разработана методика армирования компаунда на основе бутадиенстирольного термоэластопласта. Исследованы механические характеристики армированных компаундов. Проведен сравнительный анализ различных методов введения нанонаполнителя в полимерную матрицу. Разработанная методика показывает прирост прочности композиции при сжатии на 50%, а также прочности на растяжение на 20%.

Ключевые слова: термоэластопласт, графен, ТЭП, армирование, физико-механические характеристики, УЗ, ультразвук, распределение

DOI: 10.31857/S0132665123600243, EDN: OMVKWX

ВВЕДЕНИЕ

Термопластичные эластомеры (ТЭП) — это гибридные материалы, обычно изготовленные из термопластов и эластомеров, с низкой твердостью относительно других пластиков, которые могут выдерживать большие деформации без разрушения [1-3]. Это специализированные полимеры, которые привлекли интерес научного сообщества благодаря своей уникальной эластичности и термопластичной обрабатываемости [4].

Графен — двумерная модификация углерода, образованная слоем атомов углерода толщиной в один атом. Графен имеет гексагональную двумерную кристаллическую решетку, а также обладает большой механической жесткостью.

Углеродные и графитовые волокна не только исследуются, но и применяются как армирующие наполнители в полимерных матрицах, для создания высоких прочностных характеристик, а также повышения твердости и жесткости композитов.

В первых попытках упрочнения термопластов, углеродные частицы были смешаны с полимерами. Даже на малых концентрациях было замечено усиление прочностных характеристик термопластов. Согласно измерениям вязкости расплавов, графен изменяет конформацию макромолекул [5], в результате улучшаются механические характеристики композита.

Эластомеры представляют собой аморфные полимеры, обладающие высокой упругой деформацией и восстанавливающие свою первоначальную форму после снятия деформирующей силы. Они широко используются в современной жизни, особенно в автомобильной промышленности (шины, тормозные системы, шасси, детали инте-

Показатели		Наполнение графеном, мас. %					
		1	2	4	6		
Предел прочности при растяжении при 20°C, МПа	1.62	1.81	2.10	2.70	2.92		
Удлинение при разрыве при 20°C	182	173	163	176	124		
Предел прочности при растяжение при 125°C, МПа	0.86	0.89	1.45	1.43	1.70		
Удлинение при разрыве при 125°C	59	50	41	54	47		
Прочность на разрыв, кгс/см	7.4	7.6	11.0	11.7	11.9		

Таблица 1. Влияние степени наполнения графена на прочностные характеристики композита

рьера и т.д.). Во многих случаях для продления срока службы эластомеров и дальнейшего расширения сферы их применения требуется улучшение их механических свойств. Улучшенные механические свойства, такие как прочность сцепления, разрыв и износостойкость, были зарегистрированы для различных наполненных углеродными волокнами эластомеров, включая фторированные эластомеры и каучуки [6].

При добавлении углеродных материалов увеличивается прочность при растяжении и сопротивление деформации при нагружении. Включение нанонаполнителя в эластомеры является перспективным, но недостаточно изученным подходом, который может дать материалы с повышенной износостойкостью и сопротивлением разрыву и в то же время демонстрировать более высокие значения деформации при разрушении.

При введении графена в полимерную матрицу можно значительно улучшить физические свойства полимеров носителей, при весьма небольших нагрузках. На сегодняшний день существует две проблемы, с которыми связано отсутствие промышленного применения графена, как наполнителя. Низкая эффективность современных методов его получения и высокая цена.

По результатам экспериментов, проведенных в [7] на бутадиен-нитрильном каучуке, была установлена зависимость прочностных характеристик от степени наполнения его графеном (табл. 1)

Как видно из табл. 1, значения предела прочности композиционного материала увеличиваются почти в два раза с увеличением содержания графена, а также прочности на разрыв в полтора раза. Это обеспечивает лучшие эксплуатационные характеристики. Прочностные характеристики зависят от локальных центров натяжения, которые, благодаря введению графена, выдерживают большую нагрузку. Чем больше эти значения, тем меньше дефектов в композиционной структуре, и тем больше срок службы готового изделия. Рост значения может быть связан с тем, что частицы графена заполняют объем пустот полимера и тем самым уменьшают количество локальных центров натяжения и, соответственно, снижается вероятность образования трещин в объеме композиционного материала.

Введение графена в матрицу термоэластопласта благотворно влияет на структуру полимера [8]. Микроструктура характеризовалась сканирующей электронной микроскопией и количественно определялась с помощью поляризованной рамановской спектроскопии. Графен был хорошо распределен, и ориентация частиц по сечению отлитых под давлением образцов соответствовала профилю скорости сдвига механизма фонтанного потока. Механические свойства нанокомпозитов были оценены путем испытаний на растяжение, и было обнаружено, что частицы графена способствовали значительному улучшению как по жесткости, так и по прочности.

Наименование характеристики	Методика испытания	Значение
Плотность, $\Gamma/\text{см}^3$	ISO 2781:2008	0.96
Показатель текучести расплава 190°C 5кг, г/10 мин	ISO 1133-1:2011	15.3
Условное напряжение при 100% удлинении, МПа	ISO 37-2013	2.4
Условное напряжение при 300% удлинении, МПа	ISO 37-2013	5.1
Условная прочность при растяжении, МПа	ISO 37-2013	12.3
Относительное удлинение при разрыве, %	ISO 37-2013	660
Остаточная деформация после разрыва, %	ISO 37-2013	32
Напряжение при 20% сжатия, МПа	ISO 815-1-2019	2.27
Напряжение при 50% сжатии, МПа	ISO 815-1-2019	5.04
Напряжение при 80% сжатии, МПа	ISO 815-1-2019	23.8
Остаточная деформация при сжатии, %	ISO 815-1-2019	18.1

Таблица 2. Характеристики компаунда

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Армирование материала на основе ТЭП является актуальной задачей для дальнейшего развития отрасли, поскольку позволит создавать из него изделия с уникальными полезными свойствами.

Однако армирование в расплаве является очень сложной задачей, поскольку вязкость материала очень высока и требуются большое усилие сдвига и время распределения. В качестве армирующего наполнителя использовался графен марки ГПС производства компании "ПКФ Альянс" с массовым содержанием графена 99.8%, числом слоев от 2 до 5, толщиной от 1.5 до 3.5 нм и диаметром от 1 до 10 мкм.

Рецептура компаунда, использованного для армирования:

СБС Л 7420 - 70 мас. %,

Полистирол общего назначения 525 - 20 мас. %,

Масло базовое VHVI-4 — 10 мас. %.

Исследованные физико-механические характеристики представлены в табл. 2.

В данной работе проведено исследование шести различных способов введения нанонаполнителя в матрицу термоэластопласта.

Для изготовления композиции термоэластопласта использовался двухшнековый компаундер Coperion ZSK 18 со шнеками, вращающимися сонаправленно, фильерой диаметром 2 мм и тянущим элементом с резаком для измельчения экструдата. Рабочие температуры использовали от 160 до 180°C, все компоненты подавались через дозатор, работающий по системе "loss in weight", расплавлялись и перемешивались в материальном цилиндре компаундера благодаря перемешивающим шнековым элементам, далее смесь продавливалась через отверстие фильеры и, проходя через ванну с водой, остывала и нарезалась на гранулы.

Для напитки СБС использовался турбосмеситель Labtech LMX 5-VS в который помещался термоэластопласт и нанонаполненное масло, смесь перемешивалась при 1400 об./мин в течение 20 мин.

Для проведения испытаний изготавливали стандартные лопатки первого типоразмера по $ISO37-2013^1$, а также цилиндры по $ISO 815-1:2019^2$ тип A диаметром 29 мм и

¹ ISO 37-2013 Rubber, vulcanized or thermoplastic — Determination of tensile stress-strain properties. Published 2016-01-01. 2014. P. 28.

² ISO 815-1:2019 Rubber, vulcanized or thermoplastic — Determination of compression set — Part 1: At ambient or elevated temperatures Published 2019-11-01. 2019. P. 20.

толщиной 12.5 мм. Лопатки вырубались ножом из плоского листа из ТЭП, полученного методом термопрессования при 170°С, цилиндры получались путем прямого термопрессования материала в форму с требуемыми размерами для стандартных испытаний.

Испытания были проведены на разрывной машине Zwick Roell Z5.0 с максимальной силой разрыва 5000 Н. Для лопаток использовалась скорость активного захвата 500 мм/мин при температуре окружающей среды 23 ± 2 °C по ISO37-2013, а для цилиндров скорость активного захвата была выбрана 10 мм/мин при температуре окружающей среды 23 ± 2 °C по ISO 815-1:2019 метод D.

Для подготовки дисперсии нанонаполнителя было подготовлено масло в количестве, необходимом для испытания согласно рецептуре, в него добавлен соответствующий процент наполнителя от общей массы, после чего наполнитель размешивался в масле.

Смешение масла с графеном на лопастной мешалке и введение в ТЭП.

В данном способе нанонаполнитель перемешивался в масле в течение 2 ч благодаря лопастной мешалке, далее масло смешивали с СБС, помещали в турбосмеситель. По окончании напитки маслом добавляли полистирол общего назначения (ПСОН) и компаундировали.

Двойное прохождение этапа компаундирования.

Компаунд, полученный первым способом, после гранулирования направлялся повторно для прохождения этапа компаундирования, где он снова плавился, перемешивался, продавливался через фильеру, остужался и гранулировался.

Напитка эластомера маслом и опудривание графеном.

СБС смешивали с маслом в пакете и, не доводя до полного поглощения масла, опудривали смесь графеном и помещали в турбосмеситель до полного поглощения масла. Далее добавляли ПСОН и компаундировали.

Опудривание графеном сухого СБС с последующей напиткой маслом.

Эластомер опудривали графеном, затем добавляли масло и перемешивали в турбосмесителе до полного поглощения масла, далее добавляли ПСОН и компаундировали.

Отдельный ввод графена в ПСОН с последующим смешением с остальными компонентами.

Полистирол опудривали графеном, компаундировали, затем наполненный ПСОН смешивали с остальными компонентами, перемешивали в турбосмесителе и вновь компаундировали.

Смешение масла с графеном в ультразвуке и смешение с остальными компонентами.

Наполнитель смешивали с маслом и помещали в ультразвуковую ванну на 2 ч, далее масло вводили в СБС и перемешивали в турбосмесителе. По окончании напитки маслом добавляли полистирол и компаундировали.

Результаты физико-механических испытаний различных способов смешения приведены в табл. 3.

Также было исследовано влияние технологических параметров компаундирования на физико-механические параметры наполненных термоэластопластов. Были исследованы температурные режимы 150 и 180°C. Для проведения испытания подготавливали смесь СБС с графеном и компаундировали при различных температурах. Результаты физико-механических испытаний приведены в табл. 4.

Исходя из результатов испытаний было принято решение исследовать более расширенно физико-механические характеристики, используя оптимальные технологические параметры в комбинации с ультразвуковым диспергированием нанонаполнителя в масле (табл. 5).

Таблица 3.	Физико-механические	характеристики	исследованных	образцов	шести	различных
способов						

Наименование показателя	Спо	соб 1	Спо	соб 2	Спо	соб 3	Спо	соб 4	Спос	соб 5	Спо	соб 6
Наполнение графеном, мас. %	0.1	0.5	0.1	0.5	0.1	0.5	0.1	0.5	0.1	0.5	0.1	0.5
Условное напряжение при 100% удлинении, МПа	3.4	3.5	3.4	3.5	3.2	3.0	3.4	3.5	3.2	3.1	2.8	3.7
Условное напряжение при 300% удлинении, МПа	6.2	6.2	6.2	6.2	6.0	6.7	6.2	6.2	5.2	5.7	6.6	6.9
Условная прочность при растяжении, $M\Pi a$	11.6	11.5	11.6	11.5	11.7	11.2	11.7	11.0	10.7	11.0	12.9	12.6
Относительное удлинение при разрыве, $\%$	630	640	630	640	520	510	520	540	520	540	630	680
Остаточная деформация после разрыва, %	16	16	16	16	18	18	16	19	16	19	20	20

Таблица 4. Физико-механические характеристики исследованных образцов при разных температурах компаундирования

Наименование показателя	Наполнение графеном				
наименование показателя	0%	0.1 мас. % 180°C	0.1 мас. % 150°C		
Условное напряжение при 100% удлинении, МПа	1.1	1.2	3.1		
Условное напряжение при 300% удлинении, МПа	2.4	3.2	5.7		
Условная прочность при растяжении, МПа	15.0	15.2	16.1		
Относительное удлинение при разрыве, %	820	720	840		
Остаточная деформация после разрыва, $\%$	9	6	6		

Таблица 5. Расширенные физико-механические характеристики исследованных образцов

Наименование показателя	0%	0.1 мас. % ГПС	0.25 мас. % ГПС	0.5 мас. % ГПС
ПТР при 190°С, г/10 мин (прогрев 4 мин, груз 5 кг)	15.3	19.2	19.2	18.8
Условное напряжение при 100% удлинении, МПа	2.4	2.4	2.4	2.4
Условное напряжение при 300% удлинении, МПа	5.1	5.5	5.6	5.7
Условная прочность при растяжении, МПа	12.3	14.5	14.1	12.6
Относительное удлинение при разрыве, %	660	640	660	610
Остаточная деформация после разрыва, %	20	20	21	19
Сопротивление раздиру, кН	70	78	72	74
Эластичность по отскоку, % 23°C	45	49	47	47
Потеря объема при истирании по Шоппер—Шлобаху, мм 3 (Метод Б)	105	97	112	117
Потеря объема при истирании по Шоппер—Шлобаху, мм 3 (Метод А)	72	65	69	78
Напряжение при 20% сжатии	2.27	2.22	2.66	1.62
Напряжение при 50% сжатии	5.04	5.88	6.27	4.36
Напряжение при 80% сжатии	23.8	34.4	35.2	28.7

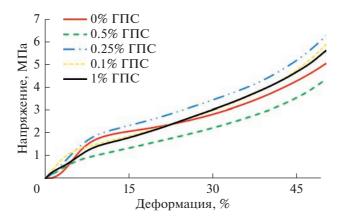


Рис. 1. Деформационные кривые испытания образцов на сжатие до 50% деформации.

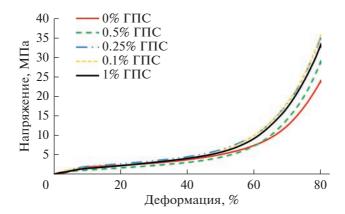


Рис. 2. Деформационные кривые испытания образцов на сжатие до 80% деформации.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

По результатам испытаний были получены физико-механические характеристики материалов, полученных шестью различными способами смешения компаунда. Установлено, что прочность при растяжении для лопаток, выполненных с ультразвуковой диспергацией нанонаполнителя в масле показывает наилучший результат, однако повышение физико-механических характеристик незначительно, менее 10%.

На рис. 1 и 2 представлены деформационные кривые образцов при сжатии материала. Напряжение при 20% сжатия для материала с наполнением 0, 0.1, 0.25, и 0.5 мас. % составило 2.27, 2.22, 2.66 и 1.62 МПа соответственно, лучший результат показал образец с наполнением 0.25 мас. %, напряжение выше на 50% (рис. 3).

Испытание на сжатие проводилось по трем образцам, далее результат усреднялся, отклонение составило 3%. Испытание на разрыв проводилось по пяти образцам, далее результат усреднялся, отклонение составило 5%. Данное отклонение указано на рис. 3 и 4 диапазоном возможных значений.

Напряжение при одинаковом удлинении у материала с содержанием 0.25 мас. % графена выше по всей длине деформационной кривой, напряжение при сжатии на

Рис. 3. Зависимость напряжения при 50% деформации сжатия от концентрации наполнителя.

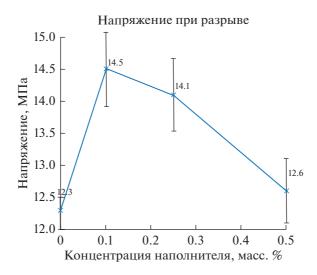


Рис. 4. Зависимость прочности при растяжении от концентрации наполнителя.

50% выше на 25%, а при сжатии на 80% напряжение выше на 50%, что свидетельствует о большей прочности материала по сравнению с ненаполненным образцом.

Из рис. 4 видно, что прочность при растяжении для образца с 0.1 и 0.25 мас. % ГПС выше на 18 и 15% соответственно. Такой результат получен благодаря увеличению площади разрыва за счет огибания углеродных частиц.

Отметим также, что в компаунде с содержанием 0.1 мас. % графена наблюдается рост сопротивления истираемости и раздиру на 10%.

Для образца с наполнением 0.5 мас. % наполнителя прочность на разрыв и напряжение при 20% сжатии меньше, чем у ненаполненного образца, это связано с тем, что превышен порог оптимальной концентрации по данному наполнителю. При большей

концентрации, предположительно, графен имеет большую агломерацию частиц, что приводит к значительному укрупнению частиц и негативно сказывается на прочностные характеристики термоэластопласта, поскольку крупные агломераты имеют меньшую поверхность соприкосновения с матрицей полимера.

ЗАКЛЮЧЕНИЕ

По результатам исследований, наилучшее результаты распределения графена в полимерной матрице демонстрирует сочетание ультразвуковой диспергации нанонаполнителя и высокие сдвиговые нагрузки при пониженной температуре переработки в компаундере, которые показывают повышение на 50% напряжение при сжатии и на 20% прочности при растяжении.

Стоит отметить, что образцы с введением графена 0.1 и 0.25 мас. % имеют прочность, превосходящую ненаполненный материал за счет эффекта ориентации молекул, а также выдерживаемое напряжение на всем протяжении деформационной кривой. Можно сделать вывод о том, что при одинаковом воздействии на изделие, данные образцы будет меньше деформироваться, что продлевает срок его службы.

Таким образом, несмотря на небольшой ввод графена, материал демонстрирует значительный рост прочности по сравнению с ненаполненным $T \ni \Pi$, и может быть рассмотрен для применения в аддитивных технологиях как перспективный материал для различных отраслей промышленности.

ФИНАНСИРОВАНИЕ

Исследование выполнено за счет гранта Российского научного фонда (проект № 20-73-10171).

СПИСОК ЛИТЕРАТУРЫ

- 1. Banerjee S.S., Bhowmick A.K. High-temperature thermoplastic elastomers from rubber—plastic blends: A state-of-the-art review // Rubber Chem. Technol. 2017. V. 90. P. 1–36.
- 2. *Banerjee S.S.*, *Bhowmick A.K.* Novel nanostructured polyamide 6/fluoroelastomer thermoplastic elastomeric blends: Influence of interaction and morphology on physical properties // Polymer. 2013. V. 54. P. 6561–6571.
- 3. Coran A.Y., Patel R. Rubber-Thermoplastic Compositions. Part IV. Thermoplastic Vulcanizates from Various Rubber-Plastic Combinations // Rubber Chem. Technol. 1981. V. 54. P. 892–903.
- 4. Banerjee S.S., Kumar K.D., Sikder A.K., Bhowmick A.K. Nanomechanics and Origin of Rubber Elasticity of Novel Nanostructured Thermoplastic Elastomeric Blends Using Atomic Force Microscopy // Macromol. Chem. Phys. 2015. V. 216. P. 1666–1674.
- 5. *Mochalin V.N.*, *Gogotsi Y.* Nanodiamond–polymer composites // Diamond and Related Materials. 2015. V. 58. P. 161–171.
- 6. *Dolmatov V.Y.* Composite materials based on elastomer and polymermatrices filled with nanodiamonds of detonation synthesis // Nanotechnol. Russ. 2009. V. 4. P. 556–575.
- 7. *Voznyakovskii A.P., Neverovskaya A.Yu., Otvalko Ja.A., Gorelova E.V., Zabelina A.N.* Facile synthesis of 2*D* carbon structures as a filler for polymer composites // Nanosystems: physics, chemistry, mathematics. 2018. V. 9 (1). P. 125–128.
- 8. Liu M., Papageorgiou D.G., Li S., Lin K., Kinloch I.A., Young R.J. Micromechanics of reinforcement of a graphene-based thermoplastic elastomer nanocomposite // Composites Part A: Applied Science and Manufacturing. 2018. V. 110. P. 84–92.