УДК 666.9-1; 666.9-127

ФУНКЦИОНАЛЬНЫЙ СОСТАВ ПОВЕРХНОСТИ ТЕРМИЧЕСКИ МОДИФИЦИРОВАННЫХ ПОРИСТЫХ СТЕКОЛ

© 2024 Цыганова Т.А.^{1, *}, Анфимова И.Н.¹, Мякин С.В.²

¹Институт химии силикатов им. И.В. Гребенщикова РАН, Россия, 199034, Санкт-Петербург, наб. Макарова, 2

²Санкт-Петербургский государственный технологический институт (Технический университет), Россия, 190013, Санкт-Петербург, Московский пр., 24—26/49, литер А

*e-mail: Tsyganova2@yandex.ru

Поступила в редакцию 16.04.24 После доработки 6.05.24 Принята к публикации 9.07.24

Аннотация. В статье представлены результаты определения содержания различных кислотно-основных центров (бренстедовских основных, бренстедовских кислотных, льюисовских основных) на внутренней поверхности стенок порового пространства высококремнеземных пористых стекол, полученных в результате сквозного выщелачивания щелочноборосиликатного стекла с двухкаркасной структурой и модифицированных путем изотермической выдержки при различных температурах в интервале 120—750°С. Проанализирована взаимосвязь между изменением содержания рассматриваемых центров и процессами гидроксилирования и дегидроксилирования поверхности пористых стекол в зависимости от температуры тепловой обработки.

Ключевые слова: двухфазные щелочноборосиликатные стекла, пористые стекла, вторичный кремнезем, поверхностные центры Льюиса и Бренстеда, метод адсорбции кислотно-основных индикаторов

DOI: 10.31857/S0132665124030081, EDN: PMNUCG

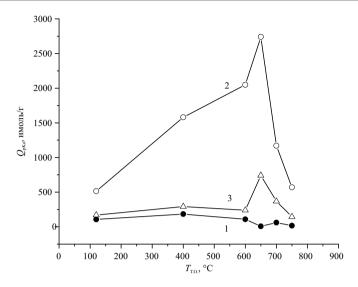
ВВЕДЕНИЕ

Высококремнеземные пористые стекла (ПС), получаемые в результате сквозного выщелачивания двухфазных щелочноборосиликатных стекол [1], являются перспективными мембранами и базовыми матрицами для создания различных материалов, включая фотохромные и люминесцентные материалы, специальные мембраны и т.д. [2–5]. Одной из важнейших характеристик, определяющих целевые свойства рассматриваемых материалов, их поведение при различных видах обработки и взаимодействие с окружающей средой, является функциональный состав поверхности, то есть содержание различных поверхностных центров и функциональных групп, в том числе кислот и оснований Льюиса и Бренстеда.

Для исследования функционально-химического состава внутренней поверхности ПС используется метод адсорбции кислотно-основных индикаторов, основанный на измерении оптической плотности стандартных водных растворов индикаторов при характеристических длинах волн [6].

Как было показано в ранее выполненных исследованиях [7, 8], присутствующие на поверхности кремнезема льюисовские основные центры (ЛОЦ) с рКа −0.3 соответствуют атомам кислорода в кремнекислородных мостиковых связях, бренстедовские кислотные центры (БКЦ) с рКа 2.5 — кислотным гидроксильным группам =Si−OH, а бренстедовские основные центры (БОЦ) с рКа 8.8 — "тройным" гидроксильным группам −Si(OH)₃. В [9] было изучено влияние условий тепловой обработки ПС на содержание БКЦ с рКа 2.5 и ЛОЦ с рКа −0.3. В продолжение этих исследований в данной работе проведено сопоставление содержания указанных центров и БОЦ в расширенном интервале температур обработки и проанализированы возможные процессы, приводящие к изменениям функционального состав поверхности ПС.

МЕТОДИКА ЭКСПЕРИМЕНТА


Образцы двухфазного щелочноборосиликатного (ЩБС) стекла имеющие состав (мас. %): $6.74~\rm Na_2O\cdot 20.52~B_2O_3\cdot 72.59~\rm SiO_2\cdot 0.15~Al_2O_3~[2,3]$ в виде пластин $15\times15\times1.5~\rm mm^3$ подвергали сквозному травлению в водном 3M растворе HNO₃ с последующей промывкой в дистиллированной воде и сушкой при $120^{\rm o}$ C. В результате получали ПС, имеющий состав (мас. %) $0.30~\rm Na_2O\cdot 3.14~B_2O_3\cdot 96.45~\rm SiO_2\cdot 0.11~Al_2O_3~[3]$. Образцы ПС подвергали тепловой обработке при температурах $T_{\rm r.o.}$ в интервале (400-750) °C.

Удельную поверхность пор ($S_{yд}$) образцов ПС определяли методом тепловой десорбции азота при 77 K на автоматическом анализаторе удельной поверхности "Сорбтометр—М" (Россия). Содержание бренстедовских основных центров (БОЦ) с р K_a 8.8 (индикатор — тимоловый синий), льюисовских основных центров (ЛОЦ) с р K_a —0.3 (индикатор — о-нитроанилин) и бренстедовских кислотных центров (БКЦ) с р K_a 2.5 (индикатор — м-нитроанилин) определяли методом селективной адсорбции индикатора в соответствии с методикой, описанной в [6, 10, 11]. Количество индикатора, адсорбированного из раствора на поверхности пор ПС, определяли по изменению оптической плотности раствора А в кварцевых кюветах с использованием спектрофотометра СФ-2000 (Россия) относительно дистиллированной воды в качестве контрольного образца.

Количество центров Q с соответствующим значением величины pK_a , эквивалентное количеству индикатора, адсорбированного образцом ΠC , рассчитывали по формуле [6]:

$$Q(pK_a) = \left| \frac{\left| A_0 - A_1 \right|}{m_1} \pm \frac{\left| A_0 - A_2 \right|}{m_2} \right| \cdot C_{ind} \cdot V_{ind} / A_0,$$

где $C_{\rm ind}$ — концентрация раствора индикатора (ммоль· π^{-1}), $V_{\rm ind}$ — объем раствора индикатора (мл), A_0 — оптическая плотность исходного раствора индикатора (холостой пробы), A_1 — оптическая плотность раствора индикатора после контакта с погруженной в него навеской ПС (изменение величины A за счет адсорбции индикатора на поверхности образца и изменения рН среды при контакте ПС с водой), A_2 — оптическая плотность раствора индикатора, добавленного к воде, декантированной после контакта с навеской ПС (изменение величины A только за счет изменения рН среды при контакте ПС с водой, что позволяет исключить влияние данного фактора при расчете).

Рисунок 1. Зависимость содержания центров адсорбции Q(pKa) от температуры термообработки пористого стекла $T_{\text{т.o.}}$: 1-БОЦ (pK_a 8,8); 2-БКЦ (pK_a 2.5); 3-ЛОЦ (pK_a -0,3).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Результаты, представленные на рис. 1 и в табл. 1, показывают, что термообработка (т.о.) ПС при 400° С приводит к увеличению количества БОЦ с р K_a 8.8, предположительно соответствующих гидроксильным группам $-\mathrm{Si}(\mathrm{OH})_3$ (рис. 1), как было рассмотрено выше. Возможной причиной этого является десорбция физически сорбированной воды с ее последующей хемосорбцией, приводящей к присоединению ОН-групп по напряженным и ослабленным кремнийкислородным связям на сильно искривленной поверхности пор. Повышение температуры т.о. до 650° С приводит к резкому снижению содержания БОЦ с одновременным ростом количества БКЦ ("одинарных" кислотных ОН-групп) и ЛОЦ ("мостиковых" атомов кислорода) (рис. 1), что может быть обусловлено частичным дегидроксилированием поверхности с участием рассматриваемых гидроксильных групп [7, 8]:

$$\begin{array}{ccc} & OH & OH \\ | & | \\ 2 - Si(OH)_3 \rightarrow -Si-O-Si-O- \ + \ 2 \ H_2O \end{array}$$

Дальнейшее увеличение температуры т.о. до 700—750°С приводит к значительному снижению удельной поверхности образцов, которое сопровождается уменьшением содержания рассматриваемых центров адсорбции и может быть обусловлено конденсацией соседних гидроксильных групп с образованием дополнительных кремнекислородных связей и уменьшением доступного для молекул индикаторов порового пространства (рис. 1, табл. 1). Следует отметить, что при температуре 700°С наблюдается некоторое увеличение содержания БОЦ в сочетании с уменьшением содержания БКЦ и ЛОЦ, а при 750°С — напротив, относительное снижение количества БОЦ и рост содержания БКЦ и ЛОЦ (табл. 1). Наблюдаемые изменения функционального состава поверхности ПС могут отражать

Температура обработки, °C	S _{уд,} см /г	Q (БОЦ, pKa 8.8)		Q (БКЦ, pKa 2,5)*)		Q (ЛОЦ, pKa -0.3)*)	
		нмоль/г	нмоль/м ²	нмоль/г	нмоль/м ²	нмоль/г	нмоль/м ²
120	197	106,6	0,54	516	2,6	170	0,9
400	198	184,3	0,93	1580	8,0	292	1,5
600	165	109,0	0,66	2050	12,4	239	1,45
650	158	8,4	0,05	2740	17,3	741	4,7
700	121	60,6	0,5	1170	9,7	368	3,0
750	38	15,9	0,42	570	14,8	146	3.9

Таблица 1. Содержание центров адсорбции Q с $pK_a - 0.3$, 2.5 и 8.8 на внутренней поверхности образцов ΠC .

Примечание. ^{*)} Значения $S_{yд,}$, БКЦ и ЛОЦ для образцов, термообработанных при указанных температурах, за исключением 600°C, приведены по данным [9].

рассмотренные выше процессы гидроксилирования и дегидроксилирования, конкурирующие и чередующиеся в зависимости от изменений структуры термически модифицированных ПС и изменения кривизны поверхности пор.

ЗАКЛЮЧЕНИЕ

Полученные результаты демонстрируют возможность управления функциональным составом поверхности ПС, в частности, возможность регулирования соотношения между содержанием кислотных и основных центров Льюиса и Бренстеда за счет варьирования температуры тепловой обработки, что перспективно для придания ПС необходимых характеристик для последующей обработки и создания различных композиционных материалов на их основе.

Работа выполнена в рамках государственного задания ИХС РАН (Государственная регистрация № 1021050501068-5-1.4.3 (Тематика № 3).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы данной работы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Мазурин О. В., Роскова Г. П., Аверьянов В. И., Антропова Т. В.* Двухфазные стекла: структура, свойства, применение / Под ред. Б. Г. Варшала. Л.: Наука, 1991. 276 с.
- 2. Antropova T., Girsova M., Anfimova I., Drozdova I., Polyakova I., Vedishcheva N. Structure and spectral properties of the photochromic quartz-like glasses activated by silver halides // J. Non-Crystalline Solids. 2014. V. 401. P. 139–141.
- 3. Antropova T. V., Girsova M. A., Anfimova I. N., Drozdova I. A. Spectral properties of the high-silica porous glasses doped by silver halides // Journal of Luminescence. 2018. Vol. 193. Pp. 29–33.
- 4. *Melich Romain, Zorgani Ali, Padilla Frédéric, Charcosset Catherine* Preparation of perfluorocarbon emulsions by premix membrane emulsification for Acoustic Droplet Vaporization (ADV) in

- biomedical applications // Biomedical Microdevices. 2020. Vol. 22:62. DOI:10.1007/s10544-020-00504-5.
- Zhang Yabin, Liu Jingjing, Du Xiongfei, Shao Wei Preparation of reusable glass hollow fiber membranes and methylene blue adsorption // Journal of the European Ceramic Society.2019. Vol. 39. P. 4891–4900.
- 6. *Нечипоренко А. П.* Донорно-акцепторные свойства поверхности твердофазных систем. Индикаторный метод / СПб.: Изд. "Лань", 2017. 284 с.
- 7. *Курочкин В. Е., Красовский А. Н., Васильева И. В., Мякин С. В., Заграничек А. Л., Шмыков А. Ю.* Исследование функционально-химического состава поверхности кварцевого стекла, обработанного под воздействием ускоренных электронов // Научное приборостроение. 2008. Т. 18. № 2. С. 3–9. https://readera.ru/14264537
- 8. Bardakhanov S. P., Vasiljeva I. V., Kuksanov N. K., Mjakin S. V. Surface Functionality Features of Nanosized Silica Obtained by Electron Beam Evaporation at Ambient Pressure // Advances in Materials Science and Engineering. Volume 2010, Article ID241695, 5 pages, doi: 10.1155/2010/241695.
- 9. *Цыганова Т.А., Антропова Т.В., Мякин С.В., Анфимова И. Н.* Особенности формирования адсорбционных центров термически модифицированных высококремнеземных пористых стекол // Физика и химия стекла. 2020. Т. 46. N5. с.475—481. DOI: 10.31857/S0132665120050121.
- 10. Сычев М. М., Минакова Т. С., Слижов Ю. Г., Шилова О. А. Кислотно-основные характеристики поверхности твердых тел и управление свойствами материалов и композитов / СПб: Химиздат, 2016. 271 с.
- 11. *Сычев М. М., Минакова Т. С.* Кислотно-основные характеристики поверхности твердых тел и управление свойствами материалов и композитов. СПб: Химиздат, 2022. 288 с.