- Код статьи
- S3034613425030031-1
- DOI
- 10.7868/S3034613425030031
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 51 / Номер выпуска 3
- Страницы
- 319-335
- Аннотация
- Разработан новый композиционный материал на основе термозластопласта для 3D-печати нейтронопоглощающих изделий. Показано, что использование термозластопласта при разработке материала для 3D-печати изделий позволяет обеспечить требуемые свойства поглощения нейтронов, существенно повысив технологичность композиции и сохранив возможность применять композиции в аддитивных технологиях. Концентрация нитрида бора в композите, позволяющая достичь эффекта поглощения материалом нейтронного излучения 2.4 Å/1.2 Å (3/1) на глубину проникновения в 1.4 мм, при сохранении его физико-механических свойств, составило 25%. Физико-механические характеристики разработанного материала не уступают ненаполненным пластикам: прочность при растяжении σ = 8.1 МПа, сопротивление раздиру составило T = 76 Н/м.
- Ключевые слова
- нейтронное излучение 3D-печать аддитивные технологии нитрид бора термозластопласт
- Дата публикации
- 01.03.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 31
Библиография
- 1. Huang Y., Zhang W., Liang L., Xu J., Chen Z. A “Sandwich” type of neutron shielding composite filled with boron carbide reinforced by carbon fiber // Chem. Engineering J. 2013 V. 220. P. 143–150.
- 2. Olsson A., Rennie A.R. Boron carbide composite apertures for small‑angle neutron scattering made by three‑dimensional printing // J. Appl. Cryst. 2016. V. 49. P. 696–699.
- 3. Chetverikov Yu.O., Bykov A.A., Krotov A.V., Mistonov A.A., Murashev M.M., Smirno, I.V., Tarnavich V.V. Boron‑containing plastic composites as neutron shielding material for additive manufacturing processes // Nuclear Instruments and Methods in Physics Research. 2023. V. 1055. P. 168406.
- 4. Dorigato A., Moretti V., Dul S., Unterberger S.H., Pegoretti A. Electrically conductive nanocomposites for fused deposition modelling // Synth. Met. 2017. V. 226. P. 7–14.
- 5. Sandler N., Salmela I., Fallarero A., Rosling A., Khajeheian M., Kolakovic R., Genina N., Nyman J., Vuorela P. Towards fabrication of 3D printed medical devices to prevent biofilm formation // Int. J. Pharm. 2014. V. 459. P. 62–64.
- 6. Muwaffak Z., Goyanes A., Clark V., Basit A.W., Hilton S.T., Gaisford S. Patient‑specific 3D scanned and 3D printed antimicrobial polycaprolactone wound dressings // Int. J. Pharm. 2017. V. 527. P. 161–170.
- 7. Hosseini M.A., Malekie S., Kazemi F. Experimental evaluation of gamma radiation shielding characteristics of Polyvinyl Alcohol/Tungsten oxide composite: A comparison study of micro and nano sizes of the fillers // Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment. 2022. V. 1026. P. 166214.
- 8. Vozarova M., Neubauer E., Baca L., Kitzmantel M., Feranc J., Trembosova V., Peciar P., Samardziova M., Horvath Orlovska M., Janek M. Preparation of Fully Dense Boron Carbide Ceramics by Fused Filament Fabrication (FFF) // J. Eur. Ceramic Society. 2022. Vol. 43.
- 9. Olsson A., Hellsing M.S., Rennie A.R. New possibilities using additive manufacturing with materials that are difficult to process and with complex structures // Phys. Scr. 2017. V. 92. P. 053002.
- 10. Stone M.B., Siddel D.H., Elliott A.M., Anderson D., Abernathy D.L., Characterization of plastic and boron carbide additive manufactured neutron collimators // Rev. Sci. Instrum. 2017. V. 88. P. 123102.
- 11. Lu R., Chandrasekaran S., Du Frane W.L., Landingham R.L., Worsley M.A., Kuntz J.D. Complex shaped boron carbides from negative additive manufacturing // Mater. Des. 2018. V. 148. P. 8–16.
- 12. Lu R., Miller D.J., Du Frane W.L., Chandrasekaran S., Landingham R.L., Worsley M.A., Kuntz J.D. Negative additive manufacturing of complex shaped boron carbides // JoVE. 2018. V. 139. P. e58438.
- 13. Szentmiklósi L., Maróti B., Kis Z., Janik J., Horváth L.Z. Use of 3D mesh geometries and additive manufacturing in neutron beam experiments // Nucl. Chem. 2019. V. 320. P. 451.
- 14. Kharita M.H., Yousef S., Alnassar M. Review on the addition of boron compounds to radiation shielding concrete // Prog. Nucl. Energy. 2011. V. 53. P. 207–211.
- 15. Yilmaz E., Baltas H., Kiris E., Ustabas I., Cevik U., El-Khayatt A. M. Gamma ray and neutron shielding properties of some concrete material // Ann. Nucl. Energy. 2011. V. 38. P. 2204–2212.
- 16. Woosley S., Galehdari N.A., Kelkar A., Aravamudhan S. Fused deposition modeling 3D printing of boron nitride composites for neutron radiation shielding // J. Mater. Res. 2018. V. 33. P. 3657–3664.
- 17. Ozdemir T., Gungor A., Reyhancan I.A. Flexible neutron shielding composite material of EPDM rubber with boron trioxide: Mechanical, thermal investigations and neutron shielding tests // Radiat. Phys. Chem. 2017. V. 131. P. 7–12.
- 18. Ninyong K., Wimolmala E., Sombatsompop N., Saenboonruang K. Potential use of NR and wood/ NR composites as thermal neutron shielding materials // Polym. Test. 2017. V. 59. P. 336–343.
- 19. Lindquist K., Kline D.E., Lambert R. Radiation‑induced changes in the physical properties of BoraflexTM, a neutron absorber material for nuclear applications // J. Nucl. Mater. 1994. V. 217. P. 223–228.
- 20. Jun I., Song M.J. Nuclear analysis for the boraflex used in a typical spent‑fuel storage assembly // J. Nucl. Technol. 1995. V. 109. P. 357–365.
- 21. Chai H., Tang X., Ni M., Chen F., Zhang Y., Chen D., Qiu Y. Preparation and properties of flexible flame‑retardant neutron shielding material based on methyl vinyl silicone rubber // J. Nucl. Mater. 2015. V. 464. P. 210–215.
- 22. Gong P., Ni M., Chai H., Chen F., Tang X. Preparation and characteristics of a flexible neutron and γ‑ray shielding and radiation‑resistant material reinforced by benzophenone // Nucl. Eng. Technol. 2018. V. 50. P. 470–477.
- 23. Dubey K.A., Chaudhari C.V., Suman S.K., Raje N., Mondal R.K., Grover V., Murali S., Bhardwaj Y.K., Varshney L. Synthesis of flexible polymeric shielding materials for soft gamma rays: Physicomechanical and attenuation characteristics of radiation crosslinked polydimethylsiloxane/BiO composites // Polym. Compos. 2016. V. 37. P. 756–762.
- 24. Mesbahi A., Verdipoor K., Zolfagharpour F., Alemi A., Investigation of fast neutron shielding properties of new polyurethane based composites loaded with BC, BeO, WO, ZnO, and GdO micro‑ and nanoparticles // Pol. J. Med. Phys. Eng. 2019. V. 25. P. 211–219.
- 25. Cataldo F., Prata M., New composites for neutron radiation shielding // J. Radioanal. Nucl. Chem. 2019. V. 320. P. 831–839.
- 26. Jun J., Kim J., Bae Y., Seo Y.S. Enhancement of dispersion and adhesion of B4C particles in epoxy resin using direct ultrasonic excitation // J. Nucl. Mater. 2011. V. 416. P. 293–297.
- 27. Li Z., Xue X., Jiang T., Yang H., Zhou M. Study on the properties of boron containing ores/epoxy composites for slow neutron shielding // Adv. Mater. Res. 2011. V. 201–203. P. 2767–2771.
- 28. Lee M.K., Lee J.K., Kim J.W., Lee G.J. Properties of B4C–PbO–Al(OH)3‑epoxynanocomposite prepared by ultrasonic dispersion approach for high temperature neutron shields // J. Nucl. Mater. 2014. V. 445. P. 63–71.
- 29. Stone M.B., Crow L., Fanelli V.R., Niedziela J.L. Characterization of shielding materials used in neutron scattering instrumentation // Nucl. Instrum. Methods Phys. Res. A 2019. V. 946. P. 162708.
- 30. Stegn E.V., Zuev K.V., Grachev A.V., Lalayan V.M., Patlazhan S.A., Shaulov A. Yu., Berlin A.A. Features of the melt flow of polyethylene and boron oxide oligomer blends // Polym. Sci. Ser. A. 2014. V. 56. P. 169–172.
- 31. Ivanov S.M., Kuznetsov S.A., Volkov A.E., Terekhin P.N., Dmitriev S.V., Tcherdyntsev V.V., Gorshenkov M.V., Boykov A.A. Photons transport through ultrahigh molecular weight polyethylene based composite containing tungsten and boron carbide fillers // J. Alloys Compd. 2014. V. 586. P. 455–458.
- 32. Harrison C., Weaver S., Bertelsen C., Burgett E., Hertel N., Grulke E. Polyethylene/boron nitride composites for space radiation shielding // J. Appl. Polym. Sci. 2008. V. 109. P. 2529–2538.
- 33. Bewley D.K., Meulders J.-P., Page B.C. New neutron sources for radiotherapy // Phys. Med. Biol. 1984. V. 29. P. 341–349.
- 34. Zhang Y., Chen F., Tang X., Huang H., Chen T., Sun X. Boracic polyethylene/polyethylene wax blends and open‑cell nickel foams as neutron‑shielding composite // J. Reinf. Plast. Compos. 2018. V. 37. P. 181–190.
- 35. Colin X., Monchy-Leroy C., Audouin L., Verdu J. Lifetime prediction of polyethylene in nuclear plants // Nucl. Instrum. Methods Phys. Res. B. 2007. V. 265. P. 251–255.
- 36. Nambiar S., Yeow J.T.W. Polymer‑composite materials for radiation protection // ACS Appl. Mater. Interfaces. 2012. V. 4. P. 5717–5726.
- 37. Wundrich K.A, review of radiation resistance for plastic and elastomeric materials // Radiat. Phys. Chem. 1985. V. 24. P. 503–510.
- 38. Rennie A.R., Engber A., Eriksson O., Dalgliesh R.M. Understanding neutron absorption and scattering in a polymer composite material // Nuclear Inst. and Methods in Physics Research, A. 2020. V. 84. P. 164613.
- 39. Leigh S.J., Bradley R.J., Purssell C.P., Billson D.R., Hutchins D.A. A simple, low‑cost conductive composite material for 3D printing of electronic sensors // PLoS One. 2012. V. 7. P. e49365.
- 40. Widmann T., Kreuzer L.P., Mangiapia G., Haese M., Frielinghaus H., Müller-Buschbaum P. 3D printed spherical environmental chamber for neutron reflectometry and grazing‑incidence small‑angle neutron scattering experiments // Rev. Sci. Instrum. 2020. V. 91. P. 113903.
- 41. Somenkov V.A., Glazkov V.P., Em V.T., Gureev A.I., Murashev M.M., Sadykov R.A., Kravchuk L.V. On the complex radiation diagnostics facility DRAGON // J. Surf. Investig.: X‑Ray, Synchrotron Neutron Tech. 2019. V. 13. P. 870–876.
- 42. Timoshenko M.V., Lisyanskaya M.V., Sychev M.M., Britov V.P. Influence of Reinforcing Fillers on the Mechanical Characteristics of Thermoelastoplastic Elastomers Developed for 3D Printing // Glass Phys. Chem. 2024. V. 50. No 6. P. 695–704.
- 43. Timoshenko M.V., Balabanov S.V., Sychov M.M Koshevaya K.S., Dolmatov V. Yu., Britov V.P. The Effect of the Introduction of Detonation Nanodiamonds on the Physical and Mechanical Characteristics of Thermoplastic Elastomers // Glass Phys. Chem. 2023. V. 49. P. 314–318.
- 44. Timoshenko M.V., Balabanov S.V., Sychov M.M. Influence of nanofiller distribution on the physical and mechanical characteristics of thermoplastic elastomers // Glass Phys. Chem. 2023. V. 49. P. 546–553.
- 45. Timoshenko M.V., Balabanov S.V., Sychev M.M., Nikiforov D.I. Application of Thermoplastic Elastomer for 3D Printing by Fused Deposition Modeling(FDM) // Glass Phys. Chem. 2021. V. 47. P. 502–504.