ОХНМФизика и химия стекла Glass Physics and Chemistry

  • ISSN (Print) 0132-6651
  • ISSN (Online) 3034-6134

Закономерности агрегации 2D-нанонаполнителей в полимерных нанокомпозитах

Код статьи
10.31857/S0132665122600388-1
DOI
10.31857/S0132665122600388
Тип публикации
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 49 / Номер выпуска 4
Страницы
471-476
Аннотация
В рамках микромеханических моделей исследован процесс агрегации 2D-нанонаполнителей (органоглины и оксида графена). Степень агрегации указанных нанонаполнителей, выраженная числом отдельных пластин в одном агрегате (тактоиде) определяется отношением номинальных модулей упругости нанонаполнителя и матричного полимера. Обнаружено, что увеличение первого из указанных модулей приводит к росту степени агрегации, а повышение второго – к ее снижению. Это означает, что получить эсфолиированные (отдельные) пластины графена в полимерной матрице практически невозможно. Оба исследуемых нанокомпозита полимер/2D-нанонаполнитель армируются отдельными агрегатами нанонаполнителя, что является оптимальным вариантом их усиления.
Ключевые слова
нанокомпозит органоглина оксид графена агрегация тактоид модуль упругости степень усиления
Дата публикации
16.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
4

Библиография

  1. 1. Šupova M., Martynkova G.S., Barabaszova K. Effect of Nanofillers Dispersion in Polymer Matrices: A Review // Sci. Advanced Mater. 2011. V. 3. № 1. P. 1–25.
  2. 2. Fornes T.D., Paul D.R. Modeling Properties of Nylon 6/Clay Nanocomposites Using Composite Theories // Polymer. 2003. V. 44. № 22. P. 4993–5013.
  3. 3. Kozlov G.V., Mikitaev A.K. Structure and Properties of Nanocomposites Polymer/Organoclay. Saarbrücken: LAP LAMBERT Academic Publishing GmbH and Comp., 2013. 318 p.
  4. 4. Козлов Г.В., Долбин И.В. Эффективность графена в качестве армирующего элемента структуры полимерных нанокомпозитов // Нано- и микросистемная техника. 2019. Т. 21. № 4. С. 217–222.
  5. 5. Козлов Г.В., Долбин И.В. Применение правила смесей для описания модуля упругости полимерных нанокомпозитов // Нано- и микросистемная техника. 2018. Т. 20. № 8. С. 466–474.
  6. 6. Xu Y., Hong W., Bai H., Li C., Shi G. Strong and Ductile Poly(vinyl alcohol)/Graphene Oxide Composite Films with a Layered Structure // Carbon. 2009. V. 47. № 15. P. 3538–3543.
  7. 7. Kim H., Abdala A.A., Macosko C.W. Graphene/Polymer Nanocomposites // Macromolecules. 2010. V. 43. № 16. P. 6515–6530.
  8. 8. Khan U., May P., O’Neill A., Coleman J.N. Development of Stiff, Strong, yet Tough Composites by the Addition of Solvent Exfoliated Graphene to Polyurethane // Carbon. 2010. V. 48. № 14. P. 4035–4041.
  9. 9. Микитаев А.К., Козлов Г.В. Перколяционная модель усиления нанокомпозитов полимер/углеродные нанотрубки // Физика и механика материалов. 2015. Т. 22. № 2. С. 101–106.
  10. 10. Schaefer D.W., Justice R.S. How nano are nanocomposites? // Macromolecules. 2007. V. 40. № 24. P. 8501–8517.
  11. 11. Vermant J., Ceccia S., Dolgovskij M.K., Maffettone P.L., Macosko C.W. Quantifying Dispersion of Layered Nanocomposites via Melt Rheology // J. Rheol. 2007. V. 51. № 3. P. 429–450.
  12. 12. Козлов Г.В., Кувшинова С.А., Долбин И.В., Койфман О.И. Сравнительный анализ усиления полимеров 2D-нанонаполнителями: органоглиной и нитридом бора // Доклады АН. 2018. Т. 479. № 2. С. 145–148.
  13. 13. Jan R., May P., Bell A.P., Habib A., Khan U., Coleman J.N. Enhancing the Mechanical Properties of BN Nanosheet-Polymer Composites by Uniaxial Drawing // Nanoscale. 2014. V. 6. № 9. P. 4889–4895.
  14. 14. Микитаев А.К., Козлов Г.В., Заиков Г.Е. Полимерные нанокомпозиты: многообразие структурных форм и приложений. М.: Наука, 2009. 278 с.
  15. 15. Козлов Г.В., Ризванова П.Г., Долбин И.В., Магомедов Г.М. Определение модуля упругости нанонаполнителя в матрице полимерных нанокомпозитов // Известия ВУЗов. Физика. 2019. Т. 62. № 1. С. 112–116.
  16. 16. Ризванова П.Г., Магомедов Г.М., Козлов Г.В., Долбин И.В. Локальная и пространственная структура нанонаполнителя в полимерной матрице и ее влияние на свойства нанокомпозитов // Физика и химия обработки материалов. 2019. № 3. С. 40–45.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека