- Код статьи
- 10.31857/S0132665122600480-1
- DOI
- 10.31857/S0132665122600480
- Тип публикации
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 49 / Номер выпуска 3
- Страницы
- 294-312
- Аннотация
- Методом молекулярной динамики с использованием потенциалов ReaxFF исследован процесс плавления кварца и кристобалита, а также аморфные структуры, полученные путем охлаждения расплава на разных стадиях плавления. В расплавах кварца обнаружено длительное сохранение унаследованного от кристаллической фазы избытка 8-звенных колец. При этом в расплавах кристобалита аналогичного сохранения 6-звенных колец не наблюдается. Таким образом, можно сказать, что расплавы кварца и полученные из них стекла обладают структурной памятью, в отличии от расплавов кристобалита. Выявлено увеличение количества 4-звенных колец с ростом температуры. Обсуждается ряд других особенностей полученных аморфных структур, рассматриваемых нами как модели стекол.
- Ключевые слова
- <b><i>:</i></b> молекулярная динамика кварц кристобалит кварцевое стекло структурная память
- Дата публикации
- 16.09.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 4
Библиография
- 1. Zachariasen W.H. The atomic arrangement in glass // J. American Chemical Society. 1932. V. 54. № 10. P. 3841–3851.
- 2. Warren B.E. X-ray diffraction of vitreous silica // Zeitschrift für Kristallographie-Crystalline Materials. 1933. V. 86. № 1–6. P. 349–358.
- 3. Mashkovtsev R.I. Nepomnyashchikh A.I., Zhaboedov A.P., Paklin A.S. EPR study of the E’defects in optical glasses and cristobalite // Europhysics Letters. 2021. V. 133. № 1. P. 14003.
- 4. Garmysheva T.Y., Nepomnyashchikh A.I., Shalaev A., Kaneva E., Paklin A., Chernenko K., Kozlova A.P., Pankratov V., Shendrik R. Luminescence of ODC (II) in quartz and cristobalite glasses // J. Non-Crystalline Solids. 2022. V. 575. P. 121199.
- 5. Woodcock L.V., Angell C.A., Cheeseman P. Molecular dynamics studies of the vitreous state: Simple ionic systems and silica // The J. Chemical Physics. 1976. V. 65. № 4. P. 1565–1577.
- 6. Feuston B.P., Garofalini S.H. Empirical three-body potential for vitreous silica // The J. Chemical Physics. 1988. V. 89. № 9. P. 5818–5824.
- 7. Feuston B.P., Garofalini S.H. Oligomerization in silica sols // J. Physical Chemistry. 1990. V. 94. № 13. P. 5351–5356.
- 8. Vessal B., Amini, M., Fincham D., Catlow C.R.A. Water-like melting behaviour of SiO2 investigated by the molecular dynamics simulation technique // Philosophical Magazine B. 1989. V. 60. № 6. P. 753–775.
- 9. Vashishta P.P., Kalia R.K., Rino J.P., Ebbsjö I. Interaction potential for SiO2: A molecular-dynamics study of structural correlations // Physical Review B. 1990. V. 41. № 17. P. 12197.
- 10. Van Beest B.W.H., Kramer G.J., Van Santen R.A. Force fields for silicas and aluminophosphates based on ab initio calculations // Physical Review Letters. 1990. V. 64. № 16. P. 1955.
- 11. Afify N.D., Mountjoy G., Haworth R. Selecting reliable interatomic potentials for classical molecular dynamics simulations of glasses: The case of amorphous SiO2 // Computational Materials Science. 2017. V. 128. P. 75–80.
- 12. Pedone A., Malavasi G., Menziani M.C., Cormack A.N., Segre U. A new self-consistent empirical interatomic potential model for oxides, silicates, and silica-based glasses // The J. Physical Chemistry B. 2006. V. 110. № 24. P. 11780–11795.
- 13. Tsuneyuki S., Tsukada M., Aoki H., Matsui Y. First-principles interatomic potential of silica applied to molecular dynamics // Physical Review Letters. 1988. V. 61. № 7. P. 869.
- 14. Cormack A.N., Du J., Zeitler T.R. Alkali ion migration mechanisms in silicate glasses probed by molecular dynamics simulations // Physical Chemistry Chemical Physics. 2002. V. 4. № 14. P. 3193–3197.
- 15. Flikkema E., Bromley S.T. A new interatomic potential for nanoscale silica // Chemical Physics Letters. 2003. V. 378. № 5–6. P. 622–629.
- 16. Du J., Cormack A.N. The structure of erbium doped sodium silicate glasses // J. Non-Crystalline Solids. 2005. V. 351. № 27–29. P. 2263–2276.
- 17. Carré A., Ispas S., Horbach J., Kob W. Developing empirical potentials from ab initio simulations: The case of amorphous silica // Computational Materials Science. 2016. V. 124. P. 323–334.
- 18. Carre A., Horbach J., Ispas S., Kob W. New fitting scheme to obtain effective potential from Car-Parrinello molecular-dynamics simulations: Application to silica // EPL (Europhysics Letters). 2008. V. 82. № 1. P. 17001.
- 19. Soules T.F., Gilmer G.H., Matthews M.J., Stolken J.S., Feit M.D. Silica molecular dynamic force fields – A practical assessment // J. Non-Crystalline Solids. 2011. V. 357. № 6. P. 1564–1573.
- 20. Soules T.F. Computer simulation of glass structures // J. Non-Crystalline Solids. 1990. V. 123. № 1–3. P. 48–70.
- 21. Takada A., Richet P., Catlow C.R.A., Price G.D. Molecular dynamics simulations of vitreous silica structures // J. Non-Crystalline Solids. 2004. V. 345. P. 224–229.
- 22. Tersoff J. Empirical interatomic potential for carbon, with applications to amorphous carbon // Physical Review Letters. 1988. V. 61. № 25. P. 2879.
- 23. Munetoh S., Motooka T., Moriguchi K., Shintani A. Interatomic potential for Si–O systems using Tersoff parameterization // Computational Materials Science. 2007. V. 39. № 2. P. 334–339.
- 24. Tangney P., Scandolo S. An ab initio parametrized interatomic force field for silica // The J. Chemical Physics. 2002. V. 117. № 19. P. 8898–8904.
- 25. Garofalini S.H. Molecular dynamics simulations of silicate glasses and glass surfaces // Reviews in Mineralogy and Geochemistry. 2001. V. 42. № 1. P. 131–168.
- 26. Pedone A. Properties calculations of silica-based glasses by atomistic simulations techniques: a review // The J. Physical Chemistry C. 2009. V. 113. № 49. P. 20773–20784.
- 27. von Alfthan S., Kuronen A., Kaski K. Realistic models of amorphous silica: a comparative study of different potentials // Physical Review B. 2003. V. 68. № 7. P. 073203.
- 28. Wooten F., Winer K., Weaire D. Computer generation of structural models of amorphous Si and Ge // Physical Review Letters. 1985. V. 54. № 13. P. 1392.
- 29. Van Duin A.C., Dasgupta S., Lorant F., Goddard W.A. ReaxFF: a reactive force field for hydrocarbons // The J. Physical Chemistry A. 2001. V. 105. № 41. P. 9396–9409.
- 30. Wang C., Kuzuu N., Tamai Y. Molecular dynamics study on surface structure of a-SiO2 by charge equilibration method // J. Non-Crystalline Solids. 2003. V. 318. № 1–2. P. 131–141.
- 31. Rappe A.K., Goddard III W.A. Charge equilibration for molecular dynamics simulations // The J. Physical Chemistry. 1991. V. 95. № 8. P. 3358–3363.
- 32. Van Duin A.C., Strachan A., Stewman S., Zhang Q., Xu X., Goddard W.A. ReaxFFSiO reactive force field for silicon and silicon oxide systems // The J. Physical Chemistry A. 2003. V. 107. № 19. P. 3803–3811.
- 33. Fogarty J.C., Aktulga H.M., Grama A.Y., Van Duin A.C., Pandit S.A. A reactive molecular dynamics simulation of the silica-water interface // The J. Chemical Physics. 2010. V. 132. № 17. P. 174 704.
- 34. Rimsza J.M., Yeon J., Van Duin A.C.T., Du J. Water interactions with nanoporous silica: comparison of ReaxFF and ab initio based molecular dynamics simulations // The J. Physical Chemistry C. 2016. V. 120. № 43. P. 24803–24816.
- 35. Yeon J., Van Duin A.C.T. ReaxFF molecular dynamics simulations of hydroxylation kinetics for amorphous and nano-silica structure, and its relations with atomic strain energy // The J. Physical Chemistry C. 2016. V. 120. № 1. P. 305–317.
- 36. Rimsza J.M., Du J. Interfacial structure and evolution of the water–silica gel system by reactive force-field-based molecular dynamics simulations // The J. Physical Chemistry C. 2017. V. 121. № 21. P. 11534–11543.
- 37. Musgraves J.D., Hu J., Calvez L. Springer handbook of glass // Cham: Springer; 2019. P. 326.
- 38. Cahn R.W. Materials science: melting and the surface // Nature. 1986. V. 323. № 6090. P. 668–669.
- 39. Wolf D., Yip S. MRS Bulletin. 1995. V. 20. Issue 1. P. 63.
- 40. Nakano A., Kalia R.K., Vashishta P. First sharp diffraction peak and intermediate-range order in amorphous silica: finite-size effects in molecular dynamics simulations // J. Non-Crystalline Solids. 1994. V. 171. № 2. P. 157–163.
- 41. Galeener F.L., Mikkelsen Jr J.C. Vibrational dynamics in O18-substituted vitreous SiO2 // Physical Review B. 1981. V. 23. № 10. P. 5527.
- 42. Bin L., Jing-Yang W., Yan-Chun Z., Fang-Zhi L. Temperature dependence of elastic properties for amorphous SiO2 by molecular dynamics simulation // Chinese Physics Letters. 2008. V. 25. № 8. P. 2747.
- 43. Matsui M. A transferable interatomic potential model for crystals and melts in the system CaO–MgO–Al2O3–SiO2 // Mineral. Mag. 1994. V. 58. P. 571–572.
- 44. Sarnthein J., Pasquarello A., Car R. Structural and electronic properties of liquid and amorphous SiO2: An ab initio molecular dynamics study // Physical Review Letters. 1995. V. 74. № 23. P. 4682.
- 45. Sarnthein J., Pasquarello A., Car R. Model of vitreous SiO2 generated by an ab initio molecular-dynamics quench from the melt // Physical Review B. 1995. V. 52. № 17. P. 12690.
- 46. Spiekermann G., Steele-MacInnis M., Schmidt C., Jahn S. Vibrational mode frequencies of silica species in SiO2–H2O liquids and glasses from ab initio molecular dynamics // The J. Chemical Physics. 2012. V. 136. № 15. P. 154501.
- 47. Spiekermann G., Steele-MacInnis M., Kowalski P.M., Schmidt C., Jahn S. Vibrational properties of silica species in MgO–SiO2 glasses obtained from ab initio molecular dynamics // Chemical Geology. 2013. V. 346. P. 22–33.
- 48. Usui Y., Tsuchiya T. Ab initio two-phase molecular dynamics on the melting curve of SiO2 // J. Earth Science. 2010. V. 21. № 5. P. 801–810.
- 49. Benoit M., Ispas S., Tuckerman M.E. Structural properties of molten silicates from ab initio molecular-dynamics simulations: Comparison between CaO–Al2O3−SiO2 and SiO2 // Physical Review B. 2001. V. 64. № 22. P. 224205.
- 50. Litton D.A., Garofalini S.H. Vitreous silica bulk and surface self-diffusion analysis by molecular dynamics // J. Non-Crystalline Solids. 1997. V. 217. № 2–3. P. 250–263.
- 51. Litton D.A., Garofalini S.H. Modeling of hydrophilic wafer bonding by molecular dynamics simulations // J. Applied Physics. 2001. V. 89. № 11. P. 6013–6023.
- 52. Soules T.F. Molecular dynamic calculations of glass structure and diffusion in glass // J. Non-Crystalline Solids. 1982. V. 49. № 1–3. P. 29–52.
- 53. Kubicki J.D., Lasaga A.C. Molecular dynamics simulations of SiO2 melt and glass; ionic and covalent models // American Mineralogist. 1988. V. 73. № 9–10. P. 941–955.
- 54. Della Valle R.G., Andersen H.C. Molecular dynamics simulation of silica liquid and glass // The J. Chemical Physics. 1992. V. 97. № 4. P. 2682–2689.
- 55. Horbach J., Kob W., Binder K. Molecular dynamics simulation of the dynamics of supercooled silica // Philosophical Magazine B. 1998. V. 77. № 2. P. 297–303.
- 56. Horbach J., Kob W., Binder K. The dynamics of supercooled silica: acoustic modes and boson peak // J. Non-Crystalline Solids. 1998. V. 235. P. 320–324.
- 57. Horbach J., Kob W., Binder K. Specific heat of amorphous silica within the harmonic approximation // The J. Physical Chemistry B. 1999. V. 103. № 20. P. 4104–4108.
- 58. Horbach J., Kob W. Static and dynamic properties of a viscous silica melt // Physical Review B. 1999. V. 60. № 5. P. 3169.
- 59. Binder K., Horbach J., Knoth H., Pfleiderer P. Computer simulation of molten silica and related glass forming fluids: recent progress // J. Physics: Condensed matter. 2007. V. 19. № 20. P. 205102.
- 60. Vollmayr K., Kob W., Binder K. Cooling-rate effects in amorphous silica: A computer-simulation study // Physical Review B. 1996. V. 54. № 22. P. 15808.
- 61. Gotze W., Sjogren L. Relaxation processes in supercooled liquids // Reports on Progress in Physics. 1992. V. 55. № 3. P. 241.
- 62. Garca-Coln L.S., Del Castillo L.F., Goldstein P. Theoretical basis for the Vogel-Fulcher-Tammann equation // Physical Review B. 1989. V. 40. № 10. P. 7040.
- 63. Quenneville J., Taylor R.S., Van Duin A.C.T. Reactive molecular dynamics studies of DMMP adsorption and reactivity on amorphous silica surfaces // The J. Physical Chemistry C. 2010. V. 114. № 44. P. 18894–18902.
- 64. Tranh D.T.N., Van Hoang V. Molecular dynamics simulation of amorphous SiO2 thin films // The European Physical J. Applied Physics. 2015. V. 70. № 1. P. 10302.
- 65. Athanasopoulos D.C., Garofalini S.H. Molecular dynamics simulations of the effect of adsorption on SiO2 surfaces // The J. Chemical Physics. 1992. V. 97. № 5. P. 3775–3780.
- 66. Vo T., He B., Blum M., Damone A., Newell P. Molecular scale insight of pore morphology relation with mechanical properties of amorphous silica using ReaxFF // Computational Materials Science. 2020. V. 183. P. 109881.
- 67. Pakarinen O.H., Djurabekova F., Nordlund K., Kluth P., Ridgway M.C. Molecular dynamics simulations of the structure of latent tracks in quartz and amorphous SiO2 //Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2009. V. 267. № 8–9. P. 1456–1459.
- 68. Takada A., Bell R.G., Catlow C.R.A. Molecular dynamics study of liquid silica under high pressure // J. Non-Crystalline Solids. 2016. V. 451. P. 124–130.
- 69. Le V.V., Nguyen G.T. Molecular dynamics simulation of structural transformation in SiO2 glass under densification // J. Non-Crystalline Solids. 2019. V. 505. P. 225–233.
- 70. Badro J., Barrat J.L., Gillet P. Numerical simulation of α-quartz under nonhydrostatic compression: memory glass and five-coordinated crystalline phases // Physical Review Letters. 1996. V. 76. № 5. P. 772.
- 71. Szymanski M.A., Shluger A.L., Stoneham A.M. Role of disorder in incorporation energies of oxygen atoms in amorphous silica // Physical Review B. 2001. V. 63. № 22. P. 224207.
- 72. Mukhopadhyay S., Sushko P.V., Stoneham A.M., Shluger A.L. Modeling of the structure and properties of oxygen vacancies in amorphous silica // Physical Review B. 2004. V. 70. № 19. P. 195203.
- 73. El-Sayed A.M., Watkins M.B., Afanas’ev V.V., Shluger A.L. Nature of intrinsic and extrinsic electron trapping in SiO2 // Physical Review B. 2014. V. 89. № 12. P. 125201.
- 74. https://lammps.sandia.gov
- 75. Newsome D.A., Sengupta D., Foroutan H., Russo M.F., Van Duin A.C. Oxidation of silicon carbide by O2 and H2O: a ReaxFF reactive molecular dynamics study, Part I // The J. Physical Chemistry C. 2012. V. 116. № 30. P. 16111–16121.
- 76. Yu Y., Wang B., Wang M., Sant G., Bauchy M. Revisiting silica with ReaxFF: towards improved predictions of glass structure and properties via reactive molecular dynamics // J. Non-Crystalline Solids. 2016. V. 443. P. 148–154.
- 77. Yeon J., Van Duin A.C.T. ReaxFF molecular dynamics simulations of hydroxylation kinetics for amorphous and nano-silica structure, and its relations with atomic strain energy // The J. Physical Chemistry C. 2016. V. 120. № 1. P. 305–317.
- 78. Doremus R.H. Viscosity of silica // J. Applied Physics. 2002. V. 92. № 12. P. 7619–7629.
- 79. Мазурин О.В. Стеклование. Наука, Ленинград; 1986, 158 с.
- 80. Johnson J.R., Bristow R.H., Blau H.H. Diffusion of ions in some simple glasses // J. American Ceramic Society. 1951. V. 34. № 6. P. 165–172.
- 81. Roma G., Limoge Y., Martin-Samos L. Oxygen and silicon self-diffusion in quartz and silica: the contribution of first principles calculations // Defect and Diffusion Forum. Trans Tech Publications Ltd, 2006. V. 258. P. 542–553.
- 82. Mikkelsen Jr J.C. Self-diffusivity of network oxygen in vitreous SiO2 // Applied Physics Letters. 1984. V. 45. № 11. P. 1187–1189.
- 83. Williams E.L. Diffusion of oxygen in fused silica // J. American Ceramic Society. 1965. V. 48. № 4. P. 190–194.
- 84. Kalen J.D., Boyce R.S., Cawley J.D. Oxygen tracer diffusion in vitreous silica // J. American Ceramic Society. 1991. V. 74. № 1. P. 203–209.
- 85. Rodríguez-Viejo J., Sibieude F., Clavaguera-Mora M.T., Monty C. 18O diffusion through amorphous SiO2 and cristobalite // Applied Physics Letters. 1993. V. 63. № 14. P. 1906–1908.
- 86. Sucov E.W. Diffusion of oxygen in vitreous silica // J. American Ceramic Society. 1963. V. 46. № 1. P. 14–20.
- 87. Richet P., Bottinga Y., Denielou L., Petitet J.P., Tequi C. Thermodynamic properties of quartz, cristobalite and amorphous SiO2: drop calorimetry measurements between 1000 and 1800 K and a review from 0 to 2000 K // Geochimica et Cosmochimica Acta. 1982. V. 46. № 12. P. 2639–2658.
- 88. Doremus R.H. Viscosity of silica // J. Applied Physics. 2002. V. 92. № 12. P. 7619–7629.
- 89. Takahashi T., Fukatsu S., Itoh K.M., Uematsu M., Fujiwara A., Kageshima H., Takahashi Y., Shiraishi K. Self-diffusion of Si in thermally grown SiO2 under equilibrium conditious // J. Applied Physics. 2003. V. 93. 1 6. P. 3674–3676.
- 90. King S.V. Ring configurations in a random network model of vitreous silica // Nature. 1967. V. 213. № 5081. P. 1112–1113.
- 91. Skuja L. Optically active oxygen-deficiency-related centers in amorphous silicon dioxide // J. Non-Crystalline Solids. 1998. V. 239. № 1–3. P. 16–48.