RAS Chemistry & Material ScienceФизика и химия стекла Glass Physics and Chemistry

  • ISSN (Print) 0132-6651
  • ISSN (Online) 3034-6134

Thermal Behavior (–180 ≤ T ≤ 1000°C) of Magnesium Orthosilicate Hydroxylclinohumite Mg5(SiO4)2(OH,F)2

PII
10.31857/S0132665122600716-1
DOI
10.31857/S0132665122600716
Publication type
Status
Published
Authors
Volume/ Edition
Volume 49 / Issue number 2
Pages
209-216
Abstract
Hydroxylclinohumite Mg5(SiO4)2(OH,F)2 is a common monoclinic orthosilicate of the humite group, which, on the one hand, is a prototype of promising materials, and, on the other hand, is an important source of information about both the transport and the presence of water in the Earth’s mantle, and therefore studying its thermal behavior is of particular interest. In this paper, the mineral is studied by powder X-ray diffraction for the first time in a wide temperature range (–180 ≤ T ≤ 1000°C). The temperature limits for the existence of the phase are established, the principal values of the thermal expansion tensor are calculated, and a structural interpretation of thermal expansion is given.
Keywords
силикат магния гидроксилклиногумит гумит кристаллическая структура термическое расширение терморентгенография
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
4

References

  1. 1. Geijer P. Norbergite and Fluoborite, two new minerals from the Norberg mining district // Geologiska Föreningen i Stockholm Förhandlingar. 1926. V. 48(1). P. 84–85.
  2. 2. Berry A.J., James M. Refinement of hydrogen positions in natural chondrodite by powder neutron diffraction: implications for the stability of humite minerals // Mineralogical Magazine. 2002. V. 66(3). P. 441–449.
  3. 3. Ribbe P.H., Gibbs G.V. Crystal Structures of the Humite Minerals: III. Mg/Fe Ordering in Humite and its Relation to Other Ferromagnesian Silicates // American Mineralogist. 1971. V. 56(7–8). P. 1155–1173.
  4. 4. Friedrich A., Lager G.A., Kunz M., Chakoumakos B.S., Smyth J.R., Schultz A.J. Temperature-dependent single-crystal neutron diffraction study of natural chondrodite and clinohumites // American Mineralogist. 2001. V. 86(9). P. 981–989.
  5. 5. Pekov I.V., Gerasimova E.I., Chukanov N.V., Kabalov Yu.K., Zubkova N.V., Zadov A.E., Yapaskurt V.O., Gekimyants V.M., Pushcharovskii D.Yu. Hydroxylchondrodite Mg5(SiO4)2(OH)2: A new mineral of the humite group and its crystal structure // Doklady Earth Sciences. 2011. V. 436. P. 230–236.
  6. 6. Ferraris G., Prencipe M., Sokolova E., Gekimyants V.M., Spiridonov E.M. Hydroxylclinohumite, a new member of the humite group: Twinning, crystal structure and crystal chemistry of the clinohumite subgroup // Zeitschrift für Kristallographie – Crystalline Materials. 2000. V. 215(3). P. 169–173.
  7. 7. Wunder B., Medenbach O., Daniels P., Schreyer W. First synthesis of the hydroxyl end-member of humite, Mg7Si3O12(OH)2 // American Mineralogist. 1995. V. 80. P. 638–640.
  8. 8. Redhammer G.J., Roth G., Amthauer G. Ca3GeO4Cl2 with a norbergite-like structure // Acta Cryst. 2007. C63. i69–i72.
  9. 9. Voron’ko Yu.K., Sobol’ A.A., Shukshin V.E., Zagumennyi A.I., Zavartsev Yu.D., Kutovoi S.A. Structural transformations in LiGd9(SiO4)6O2 and Ca2Gd8(SiO4)6O2 crystals containing isolated [SiO4] complexes: Raman spectroscopic study // Phys. Solid State. 2012. V. 54. P. 1635–1642.
  10. 10. Melcher C.L., Schweitzer J.S. Cerium-doped lutetium oxyorthosilicate: a fast, efficient new scintillator // IEEE Transactions on Nuclear Science. 1992. V. 39(4). P. 502–505.
  11. 11. Yu Ye, Smyth J.R., Jacobsen S.D., Céline G. Crystal chemistry, thermal expansion, and Raman spectra of hydroxyl-clinohumite: implications for water in Earth’s interior // Contributions to Mineralogy and Petrology. 2013. V. 165. P. 563–574.
  12. 12. Liu D., Pang Y., Yu Ye, Jin Z., Smyth J.R., Yang Y., Zhang Z., Wang Z. Crystal chemistry, thermal expansion, and Raman spectra of hydroxyl-clinohumite: implications for water in Earth’s interior // Contributions to Mineralogy and Petrology. 2013. V. 165. P. 563–574.
  13. 13. Sasaki A., Himeda A., Konaka H., Muroyama N. Ab initio crystal structure analysis based on powder diffraction data used PDXL // Rigaku J. 2010. V. 26. P. 10–14.
  14. 14. Bubnova R.S., Firsova V.A., Volkov S.N., Filatov S.K. RietveldToTensor: Program for Processing Powder X-Ray Diffraction Data under Variable Conditions // Glass Phys. Chem. 2018. V. 44. P. 33–40.
  15. 15. Momma K., Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data // J. Appl. Crystallogr. 2011. V. 44. P. 1272–1276.
  16. 16. Zulumyan N., Isahakyan A., Beglaryan H., Melikyan S. A study of thermal decomposition of antigorite from dunite and lizardite from peridotite // J. Therm. Anal. Calorim. 2018. V. 131. P. 1201–1211.
  17. 17. Бирюков Я.П., Бубнова Р.С., Филатов С.К., Гончаров А.Г. Синтез и термическое поведение оксобората Fe3O2(BO4) // Физика и химия стекла. 2016. Т. 42. С. 284–290.
  18. 18. Бирюков Я.П., Филатов С.К., Вагизов Ф.Г., Зинатуллин А.Л., Бубнова Р.С. Термическое расширение антиферромагнетиков FeBO3 и Fe3BO6 вблизи температуры Нееля // Журн. структурной химии. 2018. Т. 59. С. 2041–2048.
  19. 19. Бирюков Я.П., Бубнова Р.С., Дмитриева Н.В., Филатов С.К. Термическое поведение антиферромагнетиков FeBO3 и Fe3BO6 при отрицательных температурах // Физика и химия стекла. 2019. Т. 45. С. 184–188.
  20. 20. Филатов С.К. Обобщенная концепция повышения симметрии кристаллов с ростом температуры // Кристаллография. 2011. Т. 56(6). С. 1019–1028.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library