RAS Chemistry & Material ScienceФизика и химия стекла Glass Physics and Chemistry

  • ISSN (Print) 0132-6651
  • ISSN (Online) 3034-6134

Study on the Photosensitivity of a Composite Based on Lead Selenide and Selenite

PII
10.31857/S0132665122600923-1
DOI
10.31857/S0132665122600923
Publication type
Status
Published
Authors
Volume/ Edition
Volume 49 / Issue number 5
Pages
512-521
Abstract
This paper discusses the technology of formation of photoresistive structures based on a composite of lead selenide and lead selenite. The structures are formed by the oxidation of n-PbSe polycrystalline films. Film The surface modification mechanism of n-PbSe films in the oxidation process is analyzed by a Zeiss Merlin scanning electron microscope (SEM). The new results of the authors on the oxidation mechanism of n-PbSe, together with their earlier publications, are summarized and their consistency with each other is examined. A theoretical model (hypothesis) of the potential profile of a photosensitive heterojunction is proposed, in which each crystal of the n-PbSe film during oxidation in an atmosphere of dry air forms a continuous shell on the p-PbSeO3 surface. The hypothesis on the structural model of the photosensitive heterojunction proposed by other authors, which is based on the oxidation mechanism proposed by us, is practically confirmed in this study.
Keywords
полупроводниковые пленки фотопроводимость селенид свинца селенит свинца двухфазный композит ультрафиолет оптическое излучение источник ионов Ga<sup>+</sup>
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
2

References

  1. 1. Razeghi M., Rogalski A. Semiconductor ultraviolet detectors // J. Appl. Phys. 1996. V. 79. № 10. P. 7433–7473.
  2. 2. Zou Y., Zhang Y., Hu Y., Gu H. Ultraviolet Detectors Based on Wide Bandgap Semiconductor Nanowire: A Review // Sensors. 2018. V. 18. № 7. P. 1–25.
  3. 3. Jia L., Zheng W., Huang F. Vacuum-ultraviolet photodetectors // PhotoniX. 2020. P. 1–25.
  4. 4. Liao M. Progress in semiconductor diamond photodetectors and MEMS sensors //Functional Diamond. 2021. V. 1. № 1. P. 29–46.
  5. 5. Blank T.V., Gol’dberg Yu. Semiconductor photoelectric converters for the ultraviolet region of the spectrum // Semiconductors. 2003. V. 37. P. 999–1030.
  6. 6. Taniyasu Y., Kasu M., Makimoto T. An aluminium nitride light-emitting diode with a wavelength of 210 nanometres // Nature. 2006. V. 441. P. 325–328.
  7. 7. Shur M.S., Zukauskas A. UV Solid-State Light Emitters and Detectors // Proc. NATO ARW. Series II. V. 144. Ed. by Kluwer, Dordrecht, 2004. 308 p.
  8. 8. Guo F., Yang B., Yuan Y., Xiao Z., Dong Q., Bi Y., Huang J. A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection // Nature Nanotechnology. 2012. V. 7. № 12. P. 798–802.
  9. 9. Sang L., Liao M., Sumiya M. Comprehensive Review of Semiconductor Ultraviolet Photodetectors: From Thin Film to One-Dimensional Nanostructures // Sensors. 2013. V. 13. P. 10482–10518.
  10. 10. Soci C., Zhang A., Xiang B., Dayeh S.A., Aplin D.P.R., Park J., Bao X.Y., Lo Y.H., Wang D. ZnO Nanowire UV Photodetectors with High Internal Gain // Nano Lett. 2007. V. 7. P. 1003–1009.
  11. 11. Kind B.H., Yan H., Messer B., Law M., Yang P. Nanowire Ultraviolet Photodetectors and Optical Switches // Adv. Mater. 2002. V. 14. P. 158–160.
  12. 12. Ji L.W., Peng S.M., Su Y.K., Young S.J., Wu C.Z., Cheng W.B. Ultraviolet photodetectors based on selectively grown ZnO nanorod arrays // Appl. Phys. Lett. 2009. V. 94. Iss. 20. P. 1–3.
  13. 13. Yan F., Xin X., Aslam S., Zhao Y., Franz D., Zhao J.H., Weiner M. 4H-Sic UV photo detectors with large area and very high specific detectivity // IEEE Journal of quantum electronics. 2004. V. 40. № 9. P. 1315–1320.
  14. 14. Bi G., Zhao F., Ma J., Mukherjee S., Li D., Shi Z. Modeling of the Potential Profile for the Annealed Polycrystalline PbSe Film // PIERS Online. 2009. V. 5. № 1.
  15. 15. Попов В.П., Тихонов П.А., Томаев В.В. Исследование механизмов окисления на поверхности полупроводниковых структур селенида свинца // Физика и химия стекла. 2003. Т. 29. № 5. С. 686–694.15.
  16. 16. Tomaev V.V., Miroshkin V.P., Gar’kin L.N., Tikhonov P.A. Dielectric properties and phase transition in the PbSe + PbSeO3 composite material // Glass Physics and Chemistry. 2005. V. 31. № 6. P. 812–819.16.
  17. 17. Giannuzzi L.A., Stevie F.A. Introduction to Focused Ion Beams. Instrumentation, Theory, Techniques and Practice // Springer New York, ISBN 978-0-387-23116-7.17.
  18. 18. Tomaev V.V., Makarov L.L., Tikhonov P.A., Solomennikov A.A. Oxidation of Lead Selenide // Glass Physics and Chemistry. 2004. V. 30. № 4. P. 349–355.
  19. 19. Dashevsky Z., Kasiyan V., Radovsky G., Shufer E., Auslender M. Mid-infrared photoluminescence of PbSe film structures up to room temperature // Proceedings of SPIE – The International Society for Optical Engineering. 2008. V. 7142. № 11. 14 p.
  20. 20. Бьюб Р. Фотопроводимость твердых тел. – М.: Изд. иностранной литературы, 1962. 560 с.
  21. 21. Humphrey J.N., Scanlon W.W. Photoconductivity in Lead Selenide. Experimental // Phys. Rev. 1957. V. 105. №1. P. 469–475.22.22.
  22. 22. Humphrey J.N., Petritz R.L. Photoconductivity of Lead Selenide: Theory of the Mechanism of Sensitization // Phys. Rev., 1957. V. 105. № 6. P. 1736–1739.
  23. 23. Yasuoka Y., Wada M. Thermally Stimulated Current of Vacuum Deposited PbSe Films // Japanese Journal of Applied Physics. V. 13. № 11. P. 1797–1803.
  24. 24. Абрикосов Н.Х., Банкина В.Ф., Порецкая Л.В., Скуднова Е.В., Шелимова Л.Е. Полупроводниковые соединения, их получение и свойства. –М.: Наука, 1967. 176 с.
  25. 25. Равич Ю.И., Ефимова Б.А., Смирнов И.А. Методы исследования полупроводников в применении к халькогенидам свинца PbTe, PbSe и PbS. М.: Наука, 1968. 383 с.
  26. 26. Tomaev V.V., Egorov S.V., Stoyanova T.V. Investigation into the Photosensitivity of a Composite from Lead Selenide and Selenite in UV Region of Spectrum // Glass Physics and Chemistry. 2014. V. 40. № 2. P. 208–214.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library