- PII
- 10.31857/S0132665123600176-1
- DOI
- 10.31857/S0132665123600176
- Publication type
- Status
- Published
- Authors
- Volume/ Edition
- Volume 49 / Issue number 4
- Pages
- 383-394
- Abstract
- Using computer methods (the ToposPro software package), a combinatorial topological analysis and modeling of the self-assembly of U8Ni10Al36-mC54 (a = 15.5470 Å, b = 4.0610 Å, c = 16.4580 Å, β = 120.00°, V = 899.89 Å3, C m), U20Ni26-mC46 (a = 7.660 Å, b = 13.080 Å, c = 7.649 Å, β = 108.88°, V = 725.26 Å3, C2/m), and U8Co8-cI16 (a = 6.343 Å, V = 255.20 Å3, I 213) are carried out. For the U8Ni10Al36-mC54 crystal structure, 960 variants of the cluster representation of the 3D atomic grid with the number of structural units 5, 6, and 7 are established. Six crystallographically independent structural units in the form of a pyramid K5 = 0@Al(U2Al2), pyramid K6A = 0@U(NiAl4), and pyramid K6B = 0@U(NiAl4), as well as rings K3A = 0@NiAl2, K3B = 0@NiAl2, and K3C = 0@Al3, are determined. For the U20Ni26-mC46 crystal structure, the structural units K5 = Ni(Ni2U2) and icosahedra K13= Ni@Ni6U6 are defined. For the crystal structure U2Co2-cI16, the structural units—tetrahedra K4 = U2Co2—are defined. The symmetry and topological code of the processes of self-assembly of 3D structures from clusters-precursors are reconstructed in the following form: primary chain → layer → framework.
- Keywords
- U<sub>8</sub>Ni<sub>10</sub>Al<sub>36</sub>-<i>mC</i>54 U<sub>20</sub>Ni<sub>26</sub>-<i>mC</i>46 U<sub>8</sub>Co<sub>8</sub>-<i>cI</i>16 самосборка кристаллической структуры кластерные прекурсоры <i>K</i>3 <i>K</i>4 <i>K</i>5 <i>K</i>6 <i>K</i>13
- Date of publication
- 16.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 2
References
- 1. Inorganic crystal structure database (ICSD). Fachinformationszentrum Karlsruhe (FIZ), Germany and US National Institute of Standard and Technology (NIST), USA.
- 2. Villars P., Cenzual K. Pearson’s Crystal Data-Crystal Structure Database for Inorganic Compounds (PCDIC) ASM International: Materials Park, OH.
- 3. Perricone A., Noel H. Crystal structure refinements and magnetic behavior of U6Ni, UNi5, UNi2 and the substitution derivative U Ni1.7 Si0.3 // Chemistry of Metals and Alloys. 2008. V. 1. P. 54-57.
- 4. Perricone A., Noel H. Crystal structure and magnetic properties of the binary uranium-nickel alloy UNi4 // Intermetallics 2002. V. 10. P. 519–521.
- 5. Perricone A., Noel H. Characterization of the new uranium–nickel alloy U10Ni13 // J. Nucl. Mater. 2001. V. 299. P. 260–263
- 6. Perricone A., Potel M., Noel H. Crystal structure and magnetic properties of the binary uranium –nickel alloy U11Ni16 // J. Alloys Compd. 2002. V. 340. P. 39–42.
- 7. Grin Y.N., Rogl P., Akselrud L.G., Pertlik F. X-ray studies in the systems ZrNi5 – xOx and UNi5 – xAlx // Zeitschrift fuer Kristallographie. 1989. V. 188. P. 271–277.
- 8. Dwight A.E. The unit-cell constants of some PuNi3-type compounds // Acta Crystallographica B. 1968. V. 24 P. 1395–1396.
- 9. Dommann A., Brandle H., Hulliger F., Fischer P. Crystal structure and magnetic order of UCo5 // J. Less-Common Metals. 1990. V. 158. P. 287–294.
- 10. Baenziger N.C., Rundle R.E., Snow A.I., Wilson A.S. Compounds of Uranium with the Transition Metals of the First Long Period // Acta Crystallog. 1950. V. 3. P. 34–40.
- 11. Kimball C.W., Vaishnava P.P., Dwight A.E. Phonon anomalies and local atomic displacements in the exchange-enhanced superconductor U6Fe // Physical Review, Serie 3. B – Condensed Matter. 1985. V. 32. P. 4419–4425.
- 12. Lebech B., Wulff M., Lander G.H., Rebizant J., Spirlet J.C., Delapalme A. Neutron diffraqction studies of the crystalline and magnetic properties of UFe2 // J. Phys.: Condens. Matter. 1989. V. 1. P. 10229-248.
- 13. Lawson A.C. Jr., Smith J.L., Willis J.O., O’Rourke J.A., Faber J., Hitterman R.L. Orthorhombic structure of UMn2 at low temperatures // J. Less-Common Metals 1985. V. 107. P. 243–248.
- 14. Richter C.G., Jeitschko W., Kuennen B., Gerdes M.H. The ternary titanium transition metal bismuthides Ti4TBi2 with T = Cr, Mn, Fe, Co and Ni // J. Solid State Chem. 1997. V. 133. P. 400–406.
- 15. Bauer E.D., Sidorov V.A., Bobev S., Mixson D.J., Thompson J.D., Sarrao J.L., Hundley M.F. High-pressure investigation of the heavy-fermion antiferromagnet U3Ni5Al19 // Physical Review, Serie 3. B – Condensed Matter. 2005. V. 71. P. 1–12.
- 16. Shevchenko V.Ya., Ilyushin G.D., Blatov V.A. Cluster Self-Organization of Intermetallic Systems: New Two-Layer Nanocluster-Precursor K44 = 0@8(U2Ni6) @36(U12Ni24) in the Crystal Structure U66Ni96–hR162 // Glass Physics and Chemistry. 2021. V. 47. P. 525–532.
- 17. Ilyushin G.D. Theory of cluster self-organization of crystal-forming systems. Geometrical-topological modeling of nanocluster precursors with a hierarchical structure // Struct. Chem. 2012. V. 20. № 6. P. 975–1043.
- 18. Shevchenko V.Ya., Medrish I.V., Ilyushin G.D., Blatov V.A. From clusters to crystals: scale chemistry of intermetallics // Struct. Chem. 2019. V. 30. P. 2015–2027
- 19. Ilyushin G.D. Intermetallic Compounds KnMm (M = Ag, Au, As, Sb, Bi, Ge, Sn, Pb): Geometrical and Topological Analysis, Cluster Precursors, and Self-Assembly of Crystal Structures // Crystallography Reports. 2020. V. 65. № 7. P. 1095–1105.
- 20. Ilyushin G.D. Intermetallic Compounds NakMn (M = K, Cs, Ba, Ag, Pt, Au, Zn, Bi, Sb): Geometrical and Topological Analysis, Cluster Precursors, and Self-Assembly of Crystal Structures // Crystallography Reports. 2020. V. 65. № 4. P. 539–545.
- 21. Blatov V.A., Shevchenko A.P., Proserpio D.M. Applied Topological Analysis of Crystal Structures with the Program Package ToposPro // Cryst. Growth Des. 2014. V. 14. № 7. P. 3576–3585.