ОХНМФизика и химия стекла Glass Physics and Chemistry

  • ISSN (Print) 0132-6651
  • ISSN (Online) 3034-6134

Фрагментарная модель атомной структуры ионопроводящего полупроводникового стекла AgGeAsSe3

Код статьи
10.31857/S0132665123600267-1
DOI
10.31857/S0132665123600267
Тип публикации
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 49 / Номер выпуска 5
Страницы
499-511
Аннотация
Функция радиального распределения атомов стеклообразного AgGeAsSe3, полученная на основе экспериментальных кривых интенсивности, снятых на монохроматизированных медном и молибденовом излучениях, интерпретирована с помощью фрагментарной модели во всей области упорядочения (~9 Å). Показано, что стекло состоит из селеновых и селено-мышьяковистых тетраэдров с атомами германия и серебра внутри. Пространственное расположение таких тетраэдров в стекле в пределах области упорядочения подобно их расположению в структурах GeAsSe и GeSe2. Сделано предположение, что “ажурное” строение фрагментов этих структур обеспечивает возможность перемещения ионов Ag+ (ионную проводимость) в стеклообразном AgGeAsSe3. Фрагменты структуры ионопроводящего соединения Ag2Se в исследуемом стекле не обнаружены.
Ключевые слова
атомная структура стекол функция радиального распределения атомов фрагментарная модель ионопроводящее полупроводниковое стекло
Дата публикации
16.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
6

Библиография

  1. 1. Chalcogenide Glasses: Preparation, Properties and Applications. Edited by J.-L. Adam, X. Zhang. Woodhead Publishing, 2014. 704 p.
  2. 2. Singh A.K., Jen T.-C. Chalcogenide. Carbon Nanotubes and Graphene Composites. London–New York: CRC Press, 2021. 293 p.
  3. 3. Иванов-Шиц А.К., Мурин И.В. Ионика твердого тела. Т. 1. СПб.: Изд-во С.-Петерб. ун-та, 2000. 616 с.
  4. 4. Kawamura J., Asayama R., Kuwata N., Kamishima O. Ionic transport in glass and polymer: Hierarchical structure and dynamics. In book “Physics of Solid State Ionics”. Edited by T. Sakuma and H. Takahashi. Research Signpost, 2006. P. 193–246.
  5. 5. Баранова Е.Р., Кобелев Л.Я., Злоказов В.Б. и др. Патент РФ № 2066076.
  6. 6. Melnikova N., Kheifets O., Babushkin A., Sukhanova G. Transport properties of amorphous chalcogenides in the system Cu–Ag–Ge–As–Se in a broad range of temperatures and pressures // European Physics Journal (EPJ) Web of Conferences. 2011. V. 15. P. 03004.
  7. 7. Алейникова К.Б., Зинченко Е.Н., Лихач Н.И. Дифракционные методы анализа нанодисперсных материалов // Заводская лаборатория. Диагностика материалов. 2005. Т. 71. № 4. С. 27–31.
  8. 8. Алейникова К.Б., Зинченко Е.Н. Фрагментарная модель как метод фазового анализа дифракционно-аморфных материалов // Журн. структурной химии. 2009. Т. 50. ПРИЛОЖЕНИЕ. С. 100–106.
  9. 9. Aleinikova K.B., Zinchenko E.N., Zmeikin A.A. Application of fragmentary model to analysis of the atomic structure of amorphous materials // J. of Physics: Conference Series. 2021. V. 1942. P. 012 011.
  10. 10. Cromer D.T., Waber J.T. Scattering Factors Computed from Relativistic Dirac-Slater Wave Functions // Acta Cryst. 1965. V. 18. P. 104–109.
  11. 11. Набитович И.Д., Стецив Я.И., Волощук Я.В. Определение когерентной интенсивности и интенсивности фона по экспериментальной кривой рассеяния электронов // Кристаллография. 1967. Т. 12. № 4. С. 584–590.
  12. 12. Мак-Кракен Д., Дорн У. Численные методы и программирование на Фортране. М.: Мир, 1977. 584 с.
  13. 13. Фаддеев М.А., Марков К.А. Численные методы. Нижний Новгород: Изд-во Нижегородского госуниверситета, 2005. 156 с.
  14. 14. Вайнштейн Б.К. К теории метода радиального распределения // Кристаллография. 1957. Т. 2. № 1. С. 29–37.
  15. 15. Уоррен Б.Е. Рентгеновские исследования структуры стекол // Кристаллография. 1971. Т. 16. № 6. С. 1264–1273.
  16. 16. Порай-Кошиц М.А. Практический курс рентгеноструктурного анализа. Т. II. М.: Изд-во МГУ, 1960. 632 с.
  17. 17. Алейникова К.Б., Зинченко Е.Н., Змейкин А.А. Особенности атомного строения аморфного сплава Al85Ni10Nd5 // Физика и химия стекла. 2021. Т. 47. № 5. С. 543–553.
  18. 18. Aleinikova K.B., Likhach N.I. Fragmentary Model as Applied to Analysis of Spectroscopically Pure Vitreous SiO2 // Glass Phys. Chem. 2005. V. 31. P. 648–655.
  19. 19. Oliveria M., McMullan R.K., Wuensch B.J. Single crystal neutron diffraction analysis of the cation distribution in the high-temperature phases α-Cu2 – xS, α-Cu2 – xSe, and α-Ag2Se // Solid State Ionics. 1988. V. 28–30. P. 1332–1337.
  20. 20. Carre D., Ollitrault-Fichet R., Flahaut J. Structure de Ag8GeSe6 beta // Acta Cryst. B. 1980. V. 36. P. 245–249.
  21. 21. Нуриев И.Р., Имамов Р.М., Шафизаде Р.Б. О структуре новой кубической фазы в системе Ag–Se // Кристаллография. 1971. Т. 16. С. 1028–1030.
  22. 22. Villarreal M.A., de Chalbaud L.M., Fernadez B.J. et al. Preparation and electrical characterization of the compound CuAgGeSe3 // Journal of Physics: Conference Series. 2009. V. 167. P. 012045.
  23. 23. Hulliger F., Siegrist T. The crystal structure of GeAsSe // Materials Research Bulletin. 1981. V. 16. P. 1245–1251.
  24. 24. Dittmar G., Schäfer H. Die Kristallstruktur von Germaniumdiselenid // Acta Cryst. B. 1976. V. 32. P. 2726–2728.
  25. 25. Pradel A., Piarristeguy A.A. Ag-conducting chalcogenide glasses: applications in programmable metallization cells. In book “Nanostructured Materials for advanced Technological Application”. Netherlands: Springer, 2009. P. 435–444.
  26. 26. Cuello G.J., Piarristeguy A.A., Fernandez-Martinez A. et al. Structure of chalcogenide glasses by neutron diffraction // Journal of Non-Crystalline Solids. 2007. V. 353. P. 729–732.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека