RAS Chemistry & Material ScienceФизика и химия стекла Glass Physics and Chemistry

  • ISSN (Print) 0132-6651
  • ISSN (Online) 3034-6134

Исследование четырехкомпонентной солевой системы KI-KBr-K2CO3-K2SO4

PII
10.31857/S0132665124050103-1
DOI
10.31857/S0132665124050103
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 50 / Issue number 5
Pages
474-484
Abstract
Физика и химия стекла, Исследование четырехкомпонентной солевой системы KI-KBr-K2CO3-K2SO4
Keywords
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
3

References

  1. 1. Wu S., Peng H., Ao J., Xie L. Design and development of novel LiCl–NaCl–KCl–ZnCl2 eutectic chlorides for thermal storage fluids in concentrating solar power (CSP) applications. Solar Energy Materials and Solar Cells, 2022, vol. 240, pp. 111678.
  2. 2. Zhang T., Wang T., Wang K., Xu C., Ye F. Development and characterization of NaCl-KCl/Kaolin composites for thermal energy storage. Solar Energy, 2021. V. 227. P. 468–476. https://doi.org/10.1016/j.solener.2021.09.020
  3. 3. Liu M., Li X., Wang Y., Xu T., Yan L., Tang Z. Elaborating the high thermal storage and conductivity of molten NaCl-KCl-NaF eutectic from microstructures by FPMD simulations. Journal of Molecular Liquids, 2022, vol. 346, pp. 117054.
  4. 4. Ge Z., Ye F., Cao H., Leng G., Qin Y., Ding Y. Ge Z. Carbonate-salt-based composite materials for medium-and high-temperature thermal energy storage. Particuology, 2014, vol. 15, pp. 77–81.
  5. 5. Jiang Y., Sun Y., Jacob R., Bruno F., Li S. Novel Na2SO4-NaCl-ceramic composites as high temperature phase change materials for solar thermal power plants (Part I), Solar Energy Materials and Solar Cells. 2018, vol. 178, pp. 74–83.
  6. 6. Jiang Y., Sun Y., Li S. Performance of novel Na2SO4-NaCl-ceramic composites as high temperature phase change materials for solar power plants (Part II), Solar Energy Materials and Solar Cells. 2019, vol. 194, pp. 285–294.
  7. 7. Xu L., Wang B., Han F., Liu S., Sheng P., Li H., He C. Electronic, thermodynamic and ion transport properties of the LiCl, LiBr and LiF electrolytes of liquid metal batteries. Chemical Physics Letters, 2020, vol. 744, pp. 137210. https://doi.org/10.1016/j.solmat.2018.05.028
  8. 8. Gong Q., Ding W., Bonk A., Li H., Wang K., Jianu A., Bauer T. Molten iodide salt electrolyte for low-temperature low-cost sodium-based liquid metal battery. Journal of Power Sources, 2020, vol. 475, pp. 228674.
  9. 9. Zhang S., Liu Y., Fan Q., Zhang C., Zhou T., Kalantar-Zadeh K., Guo Z. Liquid metal batteries for future energy storage. Energy & Environmental Science, 2021, vol. 14, №. 8, pp. 4177–4202.
  10. 10. Liu D., Bai Z., Li M., Yu A., Luo D., Liu W., Chen Z. Developing high safety Li-metal anodes for future high-energy Li-metal batteries: strategies and perspectives. Chemical Society Reviews, 2020, vol. 49, №. 15, pp. 5407–5445.
  11. 11. Serp J., Allibert M., Beneš O., Delpech S., Feynberg O., Ghetta V., Zhimin D. The molten salt reactor (MSR) in generation IV: overview and perspectives. Progress in Nuclear Energy, 2014, vol. 77, pp. 308–31.
  12. 12. Uhlíř J. Chemistry and technology of Molten Salt Reactors–history and perspectives. Journal of nuclear materials, 2007, vol. 360, №. 1, pp. 6–11.
  13. 13. Fredrickson G. L., Yoo T. S. Analysis and modeling of the equilibrium behaviors of U and Pu in molten LiCl-KCl/Cd system at 500 °C. Journal of Nuclear Materials, 2018, vol. 508, pp. 51–62.
  14. 14. Mullabaev A., Tkacheva O., Shishkin V., Kovrov V., Zaikov Y., Sukhanov L., Mochalov Y. Properties of the LiCl-KCl-Li2O system as operating medium for pyro-chemical reprocessing of spent nuclear fuel. Journal of Nuclear Materials, 2018, vol. 500, pp. 235–241.
  15. 15. Tang H., Du Y., Li Y., Wang M., Wang H., Yang Z., Gao R. Electrochemistry of UBr3 and preparation of dendrite-free uranium in LiBr-KBr-CsBr eutectic melts. Journal of Nuclear Materials, 2018, vol. 508, pp. 403–410.
  16. 16. Финогенов А. А., Гаркушин И.К, Фролов Е.И. Фазовые равновесия в системах NaCl–NaBr–Na2CO3 и NaCl–NaBr–Na2SO4. Физика и химия стекла, 2022. Т. 48. № 6. С. 783–790.
  17. 17. Фролов, Е.И., Финогенов А.А, Гаркушин И.К., Сырова В.И. Фазовые равновесия в системе LiBr–Li2CO3–Li2SO4 и анализ систем LiHal–Li2CO3–Li2SO4 (Наl=F, Cl, Br, I) Журнал неорганической химии, 2020. Т. 65. № 3, С. 384–390.
  18. 18. Воскресенская Н.К., Евсеева Н.К., Беруль С.И., Верещатина И.П. Справочник по плавкости систем из безводных неорганических солей. Москва. Изд-во АН СССР, 1961, Т. 1, 845 с.
  19. 19. Васина Н.А., Грызлова Е.С, Шапошникова С.Г. Теплофизические свойства многокомпонентных солевых систем. Москва. Химия, 1984, 112 с.
  20. 20. Danilov V. P., Frolova E. A., Kondakov D. F., Sveshnikova L. B. Application of physicochemical analysis to developing and studying deicing agents. Russian Journal of Inorganic Chemistry, 2019, vol. 64, № 9, pp. 1165.
  21. 21. Melling R., Wilburn F. W., McIntosh R. M. Study of thermal effects observed by differential thermal analysis. Theory and its application to influence of sample parameters on a typical DTA curve. Analytical chemistry, 1969, vol. 41, №. 10, pp. 1275–1286.
  22. 22. Мартынова Н.С., Сусарев М.П. Расчет температуры плавления тройной эвтектики простой эвтектической системы по данным о бинарных эвтектиках и компонентах. Журнал прикладной химии, 1971. Т. 44. С. 2643–2646.
  23. 23. Гаркушин И. К., Губанова Т. В., Фролов Е. И., Мощенская Е. Ю., Баталов Н. Н., Захаров В. В. Расчет составов низкоплавких электролитов в тройных солевых системах. Электрохимическая энергетика, 2010. Т. 10. №. 3. С. 147–152.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library