RAS Chemistry & Material ScienceФизика и химия стекла Glass Physics and Chemistry

  • ISSN (Print) 0132-6651
  • ISSN (Online) 3034-6134

Влияние армирующих наполнителей на механические характеристики термоэластопластов, разработанных для 3D-печати

PII
10.31857/S0132665124060074-1
DOI
10.31857/S0132665124060074
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 50 / Issue number 6
Pages
555-570
Abstract
Физика и химия стекла, Влияние армирующих наполнителей на механические характеристики термоэластопластов, разработанных для 3D-печати
Keywords
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
7

References

  1. 1. Дик Дж.С. Технология резины: Рецептуростроение и испытания / Пер. с англ.; под ред. Шершнева В.А. СПб.: Научные основы и технологии, 2010. 620 с.
  2. 2. Каучук и резина. Наука и технология: монография // Под. ред. Дж. Марка, Б. Эрмана, Ф. Эйрича; пер. с англ. Долгопрудный: Интеллект, 2011. 768 с.
  3. 3. Холден Д., Крихельдорф Х.Р., Куирк Р.П. Термоэластопласты / Пер. с англ. СПб.: Профессия, 2011. 720 с.
  4. 4. Drobny J.G. Handbook of thermoplastic elastomers. New York: William Andrew Inc. 2007.
  5. 5. Корнев А.Е. Технология эластомерных материалов / А.Е. Корнев, А.М. Буканов, О.Н. Шевердяев. М.: НППА Истек, 2009. 504 с.
  6. 6. Voznyakovskii A.P., Neverovskaya A.Yu., Otvalko Ja.A., Gorelova E.V., Zabelina A.N. Facile synthesis of 2D carbon structures as a filler for polymer composites // Nanosystems: physics, chemistry, mathematics. 2018. V. 9 (1). P. 125–128.
  7. 7. Liu M., Papageorgiou D.G., Li S., Lin K., Kinloch I.A., Young R.J. Micromechanics of reinforcement of a graphene-based thermoplastic elastomer nanocomposite // Composites Part A: Applied Science and Manufacturing. 2018. V. 110. P. 84–92.
  8. 8. Lee C., Wei X., Kysar J.W., Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene // Science. 2008. V. 321. Is. 5887. P. 385–388.
  9. 9. Gong L., Kinloch I.A., Young R.J., Riaz I., Jalil R., Novoselov K.S. Interfacial stress transfer in a graphene monolayer nanocomposite // Adv. Mater. 2010. V. 22 (24). P. 2694–2697.
  10. 10. Papageorgiou D.G., Kinloch I.A., Young R.J. Graphene/elastomer nanocomposites // Carbon. 2015. V. 95. P. 460–484.
  11. 11. Ahmad S.R., Xue C., Young R.J. The mechanisms of reinforcement of polypropylene by graphene nanoplatelets // Mater. Sci. Eng. B. 2017. V. 216. P. 2–9.
  12. 12. Li S., Li Z., Burnett T.L., Slater T.J., Hashimoto T., Young R.J. Nanocomposites of graphene nanoplatelets in natural rubber: microstructure and mechanisms of reinforcement // J. Mater. Sci., 2017. V. 52 (16). P. 9558–9572.
  13. 13. Li Z., Young R.J., Wilson N.R., Kinloch I.A., Vallés C., Li Z. Effect of the orientation of graphene-based nanoplatelets upon the Young’s modulus of nanocomposites // Compos. Sci. Technol. 2016. V. 123. P. 125–133.
  14. 14. Papageorgiou D.G., Kinloch I.A., Young R.J. Mechanical properties of graphene and graphenebased nanocomposites // Prog. Mater. Sci. 2017. V. 90. P. 75–127.
  15. 15. Young R.J., Kinloch I.A., Gong L., Novoselov K.S. The mechanics of graphene nanocomposites: a review // Compos. Sci. Technol. 2012. V. 72 (12). P. 1459– 1476.
  16. 16. Young R.J., Liu M., Kinloch I.A., Li S., Zhao X., Vallés C. The mechanics of reinforcement of polymers by graphene nanoplatelets // Compos. Sci. Technol. 2018. V. 154. P. 110–116.
  17. 17. Namilae S., Chandra N., Shet C. Mechanical behavior of functionalized nanotubes // Chem. Phys. Lett. 2004. V. 387. P. 247–252.
  18. 18. Iijima S. Helical microtubules of graphitic carbon // Nature. 1991. V. 354. P. 56–58.
  19. 19. Zhen S., Kai K., Ica M.Z. Effect of carbon nanotube morphology on properties in thermoplastic elastomer composites for strain sensors // Composites Part A: Applied Science and Manufacturing. 2019. V. 121. P. 207–212.
  20. 20. Tarawneh M.A., Ahmad S., Chen R.S. Mechanical, thermal, and electrical properties of graphene oxide–multiwalled carbon nanotubes-filled thermoplastic elastomer nanocomposite // Journal of Elastomers & Plastics. 2017. V. 49 (4). P. 345–355.
  21. 21. Nithin C., Sarathchandran C., Anjaly S., Allisson S.F., Sabu T. Quantifying morphological and mechanical properties of thermoplastics elastomers by selective localization of nanofillers with different geometries // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2021. V. 629. № 127365.
  22. 22. Singh P., Singari R.M., Mishra R. Improved mechanical properties of multiwalled carbon nanotube reinforced acrylonitrile butadiene styrene nanocomposites prepared by twin screw extruder // Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering. 2024. V. 238 (2). P. 954–964.
  23. 23. Sahu S.K., Rama Sreekanth P.S. Mechanical, thermal and rheological properties of thermoplastic polymer nanocomposite reinforced with nanodiamond, carbon nanotube and graphite nanoplatelets // Advances in Materials and Processing Technologies. 2022. V. 8. № 4. P. 2086–2096.
  24. 24. Hota N.K., Sahoo B.P. Single-walled carbon nanotube filled thermoplastic polyurethane nanocomposites: Influence of ionic liquid on dielectric properties // Materials Today: Proceedings. 2021. V. 41. P. 216–222.
  25. 25. Stanciu N.V. Thermal, rheological, mechanical, and electrical properties of polypropylene/multi-walled carbon nanotube nanocomposites // Polymers. 2021. V. 13(2). № 187.
  26. 26. Datta S. Carbon nanotube enhanced shape memory epoxy for improved mechanical properties and electroactive shape recovery // Polymer. 2021. V. 212. № 123158.
  27. 27. Roy S., Srivastava S.K., Pionteck J., Mittal V. Mechanically and Thermally Enhanced Multiwalled Carbon Nanotube-Graphene Hybrid filled Thermoplastic Polyurethane Nanocomposites // Macromolecular Materials and Engineering. 2014. V. 300 (3). P. 346–357.
  28. 28. Chen T., Pan L., Lin M., Wang B., Liu L., Li Y., Zhu K. Dielectric, mechanical and electro-stimulus response properties studies of polyurethane dielectric elastomer modified by carbon nanotube-graphene nanosheet hybrid fillers // Polymer Testing. 2015. V. 47. P. 4–11.
  29. 29. Dolmatov V.Yu. Composition materials based on elastomer and polymer matrices filled with nanodiamonds of detonation synthesis // Nanotechnologies in Russia. 2009. V. 14. P. 556–575.
  30. 30. Timoshenko M.V., Balabanov S.V., Sychov M.M., Nikiforov D.I. Development of Material for 3d Printing Based on Thermoplastic Elastomer // Research and Education: Traditions and Innovations / Eds. Khakhomov S., Semchenko I., Demidenko O., Kovalenko D. Singapore: Springer, 2022. P. 285–289.
  31. 31. Timoshenko M.V., Balabanov S.V., Sychev M.M. Application of Thermoplastic Elastomer for 3D Printing by Fused Deposition Modeling (FDM) // Glass. Phys. Chem. 2021. V. 47. P. 502–504.
  32. 32. Timoshenko M.V., Balabanov S.V., Sychev M.M. Thermoplastic Elastomer for 3D Printing by Fused Deposition Modeling // Polym. Sci. Ser. A. 2021. V. 63. P. 652–656.
  33. 33. Timoshenko M.V., Balabanov S.V., Sychov M.M. The Effect of the Introduction of Detonation Nanodiamonds on the Physical and Mechanical Characteristics of Thermoplastic Elastomers // Glass. Phys. Chem. 2023. V. 49. P. 314–318.
  34. 34. Timoshenko M.V., Balabanov S.V., Sychov M.M. Influence of nanofiller distribution on the physical and mechanical characteristics of thermoplastic elastomers // Glass. Phys. Chem. 2023. V. 49. P. 546–553.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library