RAS Chemistry & Material ScienceФизика и химия стекла Glass Physics and Chemistry

  • ISSN (Print) 0132-6651
  • ISSN (Online) 3034-6134

LaBaLuO: НОВЫЙ СМЕШАННЫЙ КИСЛОРОДНО-ИОННЫЙ ПРОВОДНИК

PII
S3034613425040093-1
DOI
10.7868/S3034613425040093
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 51 / Issue number 4
Pages
482-489
Abstract
Активно ведется разработка новых керамических материалов, которые обладают ионной проводимостью и могут быть использованы в качестве компонентов в различных электрохимических устройствах. Это исследование сосредоточено на изучении электропроводности полученного недавно слоистого перовскитоподобного оксида LaBaLuO, обладающего двухслойной структурой Рудллесдена-Поппера. Соединения с данной структурой проявляют ионную проводимость, уровень которой зависит от замещений в кристаллической решетке. Было установлено, что электропроводность в LaBaLuO имеет смешанный кислородно-ионный характер, при этом ионная проводимость составляет в среднем 66.5% от общей проводимости.
Keywords
Date of publication
01.06.2025
Year of publication
2025
Number of purchasers
0
Views
23

References

  1. 1. Ruddlesden S.N., Popper P. The compounds Sr3Ti2O7 and its structure //Acta Crystallogr. 1958. V. 11. No 1. P. 54–55.
  2. 2. Beznosikov B.V., Aleksandrov K.S. Perovskite-like crystals of the Ruddlesden–Popper series // Crystallography Reports. 2000. V. 45. No 5. P. 792–798.
  3. 3. Zvereva I., Smirnov Yu., Gusarov V., Popova V., Choisnet J. Complex aluminates RE2SrAl2O7 (RE = La, Nd, Sm-Ho): Cation ordering and stability of double perovskite slab-rocksalt layer P2/RS intergrowth // J. Solid State Sci. 2003. V. 5. P. 343–349.
  4. 4. Popova V.F., Tugova E.A. Thermal stability of complex aluminates in the La2SrAl2O7-Ho2SrAl2O7 system // Russ. J. Inorg. Chem. 2023. V. 68. No 10. P. 1482–1486.
  5. 5. Lei Y., Lei L., Xiao Q.L., Xiang M.C. Structure Evolution and Enhanced Microwave Dielectric Characteristics of (Sr1 – xCax)La2Al2O7 Ceramics // J. Am. Ceram. Soc. 2014. V. 97. No 11. P. 3531–3536.
  6. 6. Yuan J., Dong Sh., Jiang J., Deng L., Cao X. High-temperature corrosion behaviour of plasma sprayed Gd2SrAl2O7 coatings by V2O5 at 700–1200 °C // Corrosion Science. 2022. V. 197. P. 110032.
  7. 7. Chahar S., Devi R., Dalal M., Bala M., Dalal J., Boora P., Taxak V.B., Lather R., Khatri S.P. Color tunable nanocrystalline SrGd2Al2O7: Tb3+ phosphor for solid state lighting // Ceramics International. 2019. V. 45. No 1. P. 606–613.
  8. 8. Tugova E.A. Mechanisms of the Solid-State Synthesis of Ln2SrFe2O7 (Ln = La, Nd, Gd, Dy) Layered Perovskite-Related Phases // Russ. J. Gen. Chem. 2019. V. 89. P. 2295–2300.
  9. 9. Tugova E.A., Bobrysheva N.P., Selyutin A.A., Gusarov V.V. Magnetic properties of complex oxides Gd2SrM2O7 (M = Fe, Al) // Russ. J. Gen. Chem. 2008. V. 78. P. 2000–2001.
  10. 10. Sheshko T.F., Kryuchkova T.A., Serov Yu.M., Chislova I.V., Zvereva I.A. New mixed perovskite-type Gd2–xSr1+xFe2O7 catalysts for dry reforming of methane and production of light olefins // Catal. Ind. 2017. V. 9. P. 162–169.
  11. 11. Gurusinghe N.N.M., Fones J.C., Marco J.F., Berry F.J., Greaves C. Fluorine insertion into the Ruddlesden–Popper phase La2BaFe2O7: the structure and magnetic properties of La2BaFe2O5F4 // Dalton Trans. 2014. V. 43. P. 2038–2043.
  12. 12. Kamegashira N., Satoh H., Meng J., Mikami T. Structural determination of a new phase of monoclinic BaTb2Mn2O7 // J. Alloys Compd. 2004. V. 374. No 1–2. P. 173–176.
  13. 13. Hadermann J., Abakumov A.M., Tsirlin A.A., Rozova M.G., Sarakinou E., Antipov E.V. Expanding the Ruddlesden–Popper manganite family: the n = 3La3.2Ba0.8Mn3O10 member // Inorg. Chem. 2012. V. 51. No 21. P. 11487–11492.
  14. 14. Nakano H., Ishizawa N., Kamegashira N., Yashima M. In situ transmission electron microscopy observation of multiple phase transition in BaGd2Mn2O7 // J. Am. Ceram. Soc. 2007. V. 90. No 4. P. 1342–1345.
  15. 15. Tarasova N., Bedarkova A., Animitsa I., Korona D., Abakumova E., Medvedev D. Novel mixed oxygen-electronic conductors based on BaLa2In2O7 with two-layer Ruddlesden-Popper structure // Ceramics International. 2022. V. 48. P. 35376–35385.
  16. 16. Caldes M., Michel C., Rouillon Th., Maryvonne H., Raveau B. Novel indates Ln2BaIn2O7, n = 2 members of the Ruddlesden–Popper family (Ln = La, Nd) // J. Mater. Chem. 2002. V. 12. P. 473–476.
  17. 17. Tarasova N., Bedarkova A., Animitsa I., Abakumova E., Gnatyuk V., Zvonareva I. Novel protonic conductor SrLa2Sc2O7 with layered structure for electrochemical devices // Materials. 2022. V. 15. P. 8867.
  18. 18. Ovanesyan K.L., Petrosyan A.G., Shirinyan G.O., Pedrini C., Zhang L. Czochralski single crystal growth of Ce- and Pr-doped LaLuO3 double oxide // J. Crystal Growth. 1999. V. 198–199. P. 497–500.
  19. 19. Ito K., Tezuka K., Hinatsu Y. Preparation, magnetic susceptibility, and specific heat on interlanthanide perovskites ABO3 (A=La–Nd, B=Dy–Lu) // J. Solid State Chem. 2001. V. 157. P. 173–179.
  20. 20. Tugova E.A., Popova V.F., Romanov D.P., Tomkovich M.V., Petrosyan A.G. Synthesis of new n = 2 Ruddlesden-Popper compound La2BaLu2O7 // J. Aust. Ceram. Soc. 2025. V. 61. P. 1237–1244.
  21. 21. Lesnichyova A., Belyakov S., Stroeva A., Petrova S., Kaichev V., Kuzmin A. Densification and Proton Conductivity of La1-xBaxScO3-δ Electrolyte Membranes // Membranes. 2022. V. 12. No 11. P. 1084.
  22. 22. Filonova E., Medvedev D. Recent Progress in the Design, Characterisation and Application of LaAlO3- and LaGaO3-Based Solid Oxide Fuel Cell Electrolytes // Nanomaterials. 2022. V. 12. No 12. P. 1991.
  23. 23. Kasyanova A.V., Lyagaeva J.G., Vdovin G.K., Murashkina A.A., Medvedev D.A. Transport properties of LaYbO3-based electrolytes doped with alkaline earth elements // Electrochimica Acta. 2023. V. 439. P. 141702.
  24. 24. Fabián M., Arias-Serrano B.I., Yaremchenko A.A., Kolev H., Kaňuchová M., Briančin J. Ionic and electronic transport in calcium-substituted LaAlO3 perovskites prepared via mechanochemical route // J. Eur. Ceram. Soc. 2019. V. 39. I. 16. P. 5298–5308.
  25. 25. Nuansaeng S., Yashima M., Matsuka M., Ishihara T. Mixed Conductivity, Nonstoichiometric Oxygen, and Oxygen Permeation Properties in Co-Doped Sr3Ti2O7–δ // Chem. Eur. J. 2011. V. 17. I. 40. P. 11324–11331.
  26. 26. Irvine T.S., Sinclair D.C., West A.R. Electroceramics: characterization by impedance spectroscopy // Adv. Mater. 1990. V. 2. P. 132–138.
  27. 27. Takahashi S., Nishimoto S., Matsuda M., Miyake M. Electrode Properties of the Ruddlesden–Popper Series, Lan+1NinO3n+1 (n = 1, 2, and 3), as Intermediate-Temperature Solid Oxide Fuel Cells // J. Am. Ceram. Soc. 2010. V. 93. I. 8. P. 2329–2333.
  28. 28. Тугова Е.А., Травицков А.В., Проскурина О.В., Томкович М.В., Карпов О.Н. Физико-химические основы определения плотности и пористости: учебное пособие. СПб.: ЛЕМА, 2018. 69 с. ISBN: 978–5–00105–358–3
  29. 29. Оделевский В.И. Расчет обобщенной электропроводности гетерогенных смесей // Журнал технической физики, 1951. Т. 21. С. 1379–1381.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library